Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Sports Med ; 31(8): 548-54, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20535660

ABSTRACT

Because previous researchers have reported a reduced lactic acid production that accompanies a delayed or an absent ventilatory threshold (VTh) in water-based exercise, we hypothesized that the metaboreflex, activated by muscle acidosis, might be absent in fin swimming. This motor response, delaying the occurrence of fatigue, is characterized by a decreased median frequency (MF) of electromyographic (EMG) power spectrum. Seven healthy subjects performed a maximal fin swimming exercise protocol with simultaneous recordings of surface EMGs in VASTUS MEDIALIS (VM), TIBIALIS ANTERIOR (TA) and GASTROCNEMIUS MEDIALIS (GM). We computed the root mean square (RMS) and MF and recorded the compound evoked muscle potential (M-wave) in VM. We also measured the propulsive force and oxygen uptake (VO (2)), and determined VTh. VTh was absent in 4/7 subjects and measured at 70-90% of VO (2max) in the other three. In the three studied muscles, the global EMG activity (RMS) increased while the MF decreased in proportion of VO (2), the MF changes being significantly higher in VM (-29%) and GM (-39%) than in TA (-19%). Because no M-wave changes were noted, the MF decline was attributed to the recruitment of low-frequency, fatigue-resistant motor units. Our most important finding is the persistence of the metaboreflex even in a situation of reduced muscle acidosis.


Subject(s)
Exercise Test , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Acidosis/metabolism , Adult , Electromyography/methods , Female , Humans , Lactic Acid/metabolism , Leg/physiology , Male , Middle Aged , Oxygen Consumption , Swimming , Thigh/physiology
2.
Int J Sports Med ; 30(3): 173-81, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19199213

ABSTRACT

Data in the literature suggest that compared to dry-land exercise fin swimming might delay the activation of the anaerobic metabolism. To verify this hypothesis, we explored indirect indices such as the oxygen pulse (VO(2)/HR), carbon dioxide production (VCO(2)), and ventilatory threshold, comparing fin swimming exercise to dry-land cycling. Thirteen participants, experienced or inexperienced in fin swimming, completed an incremental fin swimming exercise and a maximal exercise on a cycloergometer with breath-by-breath measurements of heart rate (HR), ventilation (VE), tidal volume (VT), VO(2), VCO(2), and VO(2)/HR and determination of the ventilatory threshold and maximal oxygen uptake (VO(2)max). Compared to dry-land cycling exercise, fin swimming resulted in elevated or absent ventilatory threshold. Although VO(2)max did not differ in either condition, in fin swimming the maximal HR value was lower (-18%, p=0.0072), maximal VO(2)/HR higher (+20%, p=0.0325), and maximal VCO(2) lower (-17%, p=0.0071). We also measured significant reduction of VE, VT, and HR variations for the same VO(2) increase. This study suggests that the anaerobic muscle metabolism might be delayed in fin swimming. An attenuated chemoreflex drive to the heart and respiratory centres exerted by muscle metabolites might explain the depressed cardiopulmonary response to fin swimming.


Subject(s)
Pulmonary Gas Exchange , Pulmonary Ventilation , Swimming/physiology , Adult , Bicycling/physiology , Carbon Dioxide/metabolism , Exercise Test , Female , Heart Rate/physiology , Humans , Male , Oxygen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...