Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(14)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34299215

ABSTRACT

Synchronous primary malignancies occur in a small proportion of head and neck squamous cell carcinoma (HNSCC) patients. Here, we analysed three synchronous primaries and a recurrence from one patient by comparing the genomic and transcriptomic profiles among the tumour samples and determining the recurrence origin. We found remarkable levels of heterogeneity among the primary tumours, and through the patterns of shared mutations, we traced the origin of the recurrence. Interestingly, the patient carried germline variants that might have predisposed him to carcinogenesis, together with a history of alcohol and tobacco consumption. The mutational signature analysis confirmed the impact of alcohol exposure, with Signature 16 present in all tumour samples. Characterisation of immune cell infiltration highlighted an immunosuppressive environment in all samples, which exceeded the potential activity of T cells. Studies such as the one described here have important clinical value and contribute to personalised treatment decisions for patients with synchronous primaries and matched recurrences.


Subject(s)
Head and Neck Neoplasms/genetics , Mutation , Neoplasm Recurrence, Local/genetics , Neoplasms, Multiple Primary/genetics , Aged , Alcohol Drinking/genetics , Fatal Outcome , Gene Expression Profiling , Genomics , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/therapy , Humans , Male , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/therapy , Neoplasm Staging , Neoplasms, Multiple Primary/pathology , Neoplasms, Multiple Primary/therapy , Smokers/statistics & numerical data
2.
Mol Ecol Resour ; 20(4): 856-870, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32142201

ABSTRACT

In non-model organisms, evolutionary questions are frequently addressed using reduced representation sequencing techniques due to their low cost, ease of use, and because they do not require genomic resources such as a reference genome. However, evidence is accumulating that such techniques may be affected by specific biases, questioning the accuracy of obtained genotypes, and as a consequence, their usefulness in evolutionary studies. Here, we introduce three strategies to estimate genotyping error rates from such data: through the comparison to high quality genotypes obtained with a different technique, from individual replicates, or from a population sample when assuming Hardy-Weinberg equilibrium. Applying these strategies to data obtained with Restriction site Associated DNA sequencing (RAD-seq), arguably the most popular reduced representation sequencing technique, revealed per-allele genotyping error rates that were much higher than sequencing error rates, particularly at heterozygous sites that were wrongly inferred as homozygous. As we exemplify through the inference of genome-wide and local ancestry of well characterized hybrids of two Eurasian poplar (Populus) species, such high error rates may lead to wrong biological conclusions. By properly accounting for these error rates in downstream analyses, either by incorporating genotyping errors directly or by recalibrating genotype likelihoods, we were nevertheless able to use the RAD-seq data to support biologically meaningful and robust inferences of ancestry among Populus hybrids. Based on these findings, we strongly recommend carefully assessing genotyping error rates in reduced representation sequencing experiments, and to properly account for these in downstream analyses, for instance using the tools presented here.


Subject(s)
Genotyping Techniques/methods , Sequence Analysis, DNA/methods , Alleles , Chromosome Mapping/methods , Genome-Wide Association Study/methods , Genomics/methods , Genotype , High-Throughput Nucleotide Sequencing/methods , Populus/genetics
3.
New Phytol ; 223(4): 2076-2089, 2019 09.
Article in English | MEDLINE | ID: mdl-31104343

ABSTRACT

The genomic architecture of functionally important traits is key to understanding the maintenance of reproductive barriers and trait differences when divergent populations or species hybridize. We conducted a genome-wide association study (GWAS) to study trait architecture in natural hybrids of two ecologically divergent Populus species. We genotyped 472 seedlings from a natural hybrid zone of Populus alba and Populus tremula for genome-wide markers from reduced representation sequencing, phenotyped the plants in common gardens for 46 phytochemical (phenylpropanoid), morphological and growth traits, and used a Bayesian polygenic model for mapping. We detected three classes of genomic architectures: traits with finite, detectable associations of genetic loci with phenotypic variation in addition to highly polygenic heritability; traits with indications for polygenic heritability only; and traits with no detectable heritability. For the first class, we identified genome regions with plausible candidate genes for phenylpropanoid biosynthesis or its regulation, including MYB transcription factors and glycosyl transferases. GWAS in natural, recombinant hybrids represent a promising step towards resolving the genomic architecture of phenotypic traits in long-lived species. This facilitates the fine-mapping and subsequent functional characterization of genes and networks causing differences in hybrid performance and fitness.


Subject(s)
Chromosome Mapping , Genome, Plant , Hybridization, Genetic , Phytochemicals/metabolism , Populus/growth & development , Populus/genetics , Quantitative Trait, Heritable , Genome-Wide Association Study , Linkage Disequilibrium/genetics , Phenotype , Populus/anatomy & histology , Probability , Species Specificity
4.
Mol Ecol ; 25(11): 2482-98, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26880192

ABSTRACT

Natural hybrid zones have proven to be precious tools for understanding the origin and maintenance of reproductive isolation (RI) and therefore species. Most available genomic studies of hybrid zones using whole- or partial-genome resequencing approaches have focused on comparisons of the parental source populations involved in genome admixture, rather than exploring fine-scale patterns of chromosomal ancestry across the full admixture gradient present between hybridizing species. We have studied three well-known European 'replicate' hybrid zones of Populus alba and P. tremula, two widespread, ecologically divergent forest trees, using up to 432 505 single-nucleotide polymorphisms (SNPs) from restriction site-associated DNA (RAD) sequencing. Estimates of fine-scale chromosomal ancestry, genomic divergence and differentiation across all 19 poplar chromosomes revealed strikingly contrasting results, including an unexpected preponderance of F1 hybrids in the centre of genomic clines on the one hand, and genomically localized, spatially variable shared variants consistent with ancient introgression between the parental species on the other. Genetic ancestry had a significant effect on survivorship of hybrid seedlings in a common garden trial, pointing to selection against early-generation recombinants. Our results indicate a role for selection against recombinant genotypes in maintaining RI in the face of apparent F1 fertility, consistent with the intragenomic 'coadaptation' model of barriers to introgression upon secondary contact. Whole-genome resequencing of hybridizing populations will clarify the roles of specific genetic pathways in RI between these model forest trees and may reveal which loci are affected most strongly by its cyclic breakdown.


Subject(s)
Gene Flow , Hybridization, Genetic , Populus/genetics , Reproductive Isolation , Selection, Genetic , DNA, Chloroplast/genetics , DNA, Plant/genetics , Fertility , Genetics, Population , Genome, Plant , Genotype , Haplotypes , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
5.
PLoS One ; 10(5): e0125199, 2015.
Article in English | MEDLINE | ID: mdl-25933225

ABSTRACT

Species evolution depends on numerous and distinct forces, including demography and natural selection. For example, local adaptation and population structure affect the evolutionary history of species living along environmental clines. This is particularly relevant in plants, which are often characterized by limited dispersal ability and the need to respond to abiotic and biotic stress factors specific to the local environment. Here we study the demographic history and the possible existence of local adaptation in two related species of Brassicaceae, Cardamine impatiens and Cardamine resedifolia, which occupy separate habitats along the elevation gradient. Previous genome-wide analyses revealed the occurrence of distinct selective pressures in the two species, with genes involved in cold response evolving particularly fast in C. resedifolia. In this study we surveyed patterns of molecular evolution and genetic variability in a set of 19 genes, including neutral and candidate genes involved in cold response, across 10 populations each of C. resedifolia and C. impatiens from the Italian Alps (Trentino). We inferred the population structure and demographic history of the two species, and tested the occurrence of signatures of local adaptation in these genes. The results indicate that, despite a slightly higher population differentiation in C. resedifolia than in C. impatiens, both species are only weakly structured and that populations sampled at high altitude experience less gene flow than low-altitude ones. None of the genes showed signatures of positive selection, suggesting that they do not seem to play relevant roles in the current evolutionary processes of adaptation to alpine environments of these species.


Subject(s)
Adaptation, Physiological , Cardamine/physiology , Ecosystem , Bayes Theorem , Cardamine/genetics , Climate , Gene Amplification , Genes, Plant , Genetics, Population , Italy , Models, Biological , Molecular Sequence Data , Nucleotides/genetics , Polymorphism, Genetic , Population Dynamics
6.
BMC Evol Biol ; 12: 7, 2012 Jan 18.
Article in English | MEDLINE | ID: mdl-22257588

ABSTRACT

BACKGROUND: Elucidating the selective and neutral forces underlying molecular evolution is fundamental to understanding the genetic basis of adaptation. Plants have evolved a suite of adaptive responses to cope with variable environmental conditions, but relatively little is known about which genes are involved in such responses. Here we studied molecular evolution on a genome-wide scale in two species of Cardamine with distinct habitat preferences: C. resedifolia, found at high altitudes, and C. impatiens, found at low altitudes. Our analyses focussed on genes that are involved in stress responses to two factors that differentiate the high- and low-altitude habitats, namely temperature and irradiation. RESULTS: High-throughput sequencing was used to obtain gene sequences from C. resedifolia and C. impatiens. Using the available A. thaliana gene sequences and annotation, we identified nearly 3,000 triplets of putative orthologues, including genes involved in cold response, photosynthesis or in general stress responses. By comparing estimated rates of molecular substitution, codon usage, and gene expression in these species with those of Arabidopsis, we were able to evaluate the role of positive and relaxed selection in driving the evolution of Cardamine genes. Our analyses revealed a statistically significant higher rate of molecular substitution in C. resedifolia than in C. impatiens, compatible with more efficient positive selection in the former. Conversely, the genome-wide level of selective pressure is compatible with more relaxed selection in C. impatiens. Moreover, levels of selective pressure were heterogeneous between functional classes and between species, with cold responsive genes evolving particularly fast in C. resedifolia, but not in C. impatiens. CONCLUSIONS: Overall, our comparative genomic analyses revealed that differences in effective population size might contribute to the differences in the rate of protein evolution and in the levels of selective pressure between the C. impatiens and C. resedifolia lineages. The within-species analyses also revealed evolutionary patterns associated with habitat preference of two Cardamine species. We conclude that the selective pressures associated with the habitats typical of C. resedifolia may have caused the rapid evolution of genes involved in cold response.


Subject(s)
Cardamine/classification , Cardamine/genetics , Evolution, Molecular , Cardamine/physiology , Codon , Ecosystem , Phylogeny , Plant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...