Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 345: 140462, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37866495

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are extremely stable compounds due to their strong C-F bonds. They are used in water and stain proof coatings, aqueous film forming foams for fire suppression, cosmetics, paints, adhesives, etc. PFAS have been found in soils and waterways around the world due to their widespread usage and recalcitrance to degradation. Development of selective adsorbent materials is necessary to effectively capture a vast family of PFAS structures in order to remediate PFAS contamination in the environment. The work herein is focused on extracting design principles from molecular dynamics simulations of PFAS with functionalized graphene materials. Simulations examined how PFBA, PFOA, and PFOS interact with graphene, graphene oxide, nitrogen group-functionalized graphene oxide, partially fluorinated graphene flakes, and fully fluorinated flakes. Five flakes were used in each simulation to examine how interactions between flakes may lead to competitive interactions with respect to PFAS or formation of pores. Our study revealed that both the clustering mechanisms of the flakes and functional groups on the flake play a role in PFAS adsorption. The most effective functionalizations for PFAS adsorption are as follows: pristine graphene ≈ fully fluorinated > graphene oxide ≈ partially fluorinated > amine and amide functionalized graphene oxide flake. Long chain PFAS and sulfonate PFAS had higher propensity to adsorb to the materials compared to short chain PFAS and carboxylic head groups.


Subject(s)
Fluorocarbons , Graphite , Water Pollutants, Chemical , Molecular Dynamics Simulation , Adsorption , Fluorocarbons/analysis , Water , Water Pollutants, Chemical/analysis
2.
Environ Sci Process Impacts ; 24(12): 2249-2262, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36129094

ABSTRACT

Parathion, a once commonly used pesticide known for its potential toxicity, can follow several degradation mechanisms in the environment. Given the species stability and persistence, parathion can be washed into waterways from rain, and therefore an atomistic perspective of the hydrolysis of parathion, and its byproduct paraoxon, is required in order to understand its fate in the environment. Experimental studies have determined that pH plays an important role in the calculated hydrolysis rate constants of parathion degradation. In this work, the degradation of parathion into either paraoxon or 4-nitrophenol, and the degradation of paraoxon to 4-nitrophenol are explored through density functional theory using the M06-2X functional. How the level of basicity affects the reaction mechanism is explored through two different hydroxide/water environments. Our calculations support the anticipated mechanisms determined by previous experimental work that the formation of 4-nitrophenol is the predominant pathway in hydrolysis of parathion.


Subject(s)
Parathion , Parathion/metabolism , Paraoxon/metabolism , Hydrolysis , Density Functional Theory
3.
J Chem Theory Comput ; 16(11): 6894-6903, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33119287

ABSTRACT

As we push forward on understanding the fate of chemicals in the environment, we need a method that will allow for the simulation of the inherent heterogeneity. Density functional tight binding (DFTB) is a methodology that allows for a detailed electronic description and would be ideal for this problem. While many parameters can be derived directly from DFT, empirical parameters still exist in the confinement and repulsion potentials. In this manuscript, we examine these potentials and present solutions that will minimize the degree of empiricism. Our results show that it is possible to construct confinement potentials from examining the atomic radial wavefunctions. Moreover, we found that the heterogeneous repulsion potentials can be derived from using only homogeneous repulsion curves.

4.
J Phys Chem A ; 123(43): 9371-9381, 2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31589444

ABSTRACT

In the bulk, condensed-phase HCl exists as a dissociated Cl- ion and a proton that is delocalized over solvating water molecules. However, in the gas phase, HCl is covalent, and even on the introduction of hydrating water molecules, the HCl covalent state dominates small clusters and is relevant at larger clusters including 21 water molecules. Electronic structure calculations (at the MP2 level) and ab initio metadynamics simulations (at the DFT level) have been carried out on HCl-(H2O)n clusters with n = 2-22 to investigate distinct solvation environments in clusters from covalent HCl structure, to contact ion pairs and solvent-separated ion pairs. The data were further used to train and validate a multiconfigurational force-field for HCl-water clusters that incorporates covalent HCl states into the MS-EVB3.2 formalism. Additionally, the many-body interaction of the Cl- ion with water and the excess proton was modeled by the introduction of two geometric three-body terms that incorporates the dominant many-body interaction in an efficient noniterative manner.

5.
J Org Chem ; 84(11): 7166-7174, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31050428

ABSTRACT

Our investigations on the reaction mechanism to account for regioselectivity on the addition of indoles to unsymmetrical silyloxyallyl cations are reported. Using both experimental and computational methods, we confirmed the significance of steric effects from the silyl ether group toward directing the inward approach of indoles, leading to nucleophilic attack at the less substituted electrophilic α'-carbon. The role of residual water toward accelerating the rate of reaction is established through stabilization of the participating silyloxyallyl cation.


Subject(s)
Epoxy Compounds/chemistry , Indoles/chemistry , Organosilicon Compounds/chemistry , Cations/chemistry , Molecular Structure , Stereoisomerism
6.
ACS Catal ; 8(12): 12015-12029, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-31583178

ABSTRACT

Quinone reductases belong to the family of flavin-dependent oxidoreductases. With the redox active cofactor, flavin adenine dinucleotide, quinone reductases are known to utilize a 'ping-pong' kinetic mechanism during catalysis in which a hydride is bounced back and forth between flavin and its two substrates. However, the continuation of this catalytic cycle requires product displacement steps, where the product of one redox half-cycle is displaced by the substrate of the next half-cycle. Using improved hybrid quantum mechanical/molecular mechanical simulations, both the catalytic hydride transfer and the product displacement reactions were studied in NRH:quinone oxidoreductase 2. Initially, the self-consistent charge-density functional tight binding theory was used to describe flavin ring and the substrate atoms, while embedded in the molecular mechanically-treated solvated active site. Then, for each step of the catalytic cycle, a further improvement of energetics was made using density functional theory-based corrections. The present study showcases an integrated interplay of solvation, protonation, and protein matrix-induced polarization as the driving force behind the thermodynamic wheel of the 'ping-pong' kinetics. Reported here is the first-principles model of the 'ping-pong' kinetics that portrays how cyclic changes in the active site polarization and dynamics govern the oscillatory hydride transfer and product displacement in this enzyme.

7.
Angew Chem Int Ed Engl ; 55(22): 6515-9, 2016 05 23.
Article in English | MEDLINE | ID: mdl-27086646

ABSTRACT

Visible-light irradiation of 4-p-methoxyphenyl-3-butenylthioglucoside donors in the presence of Umemoto's reagent and alcohol acceptors serves as a mild approach to O-glycosylation. Visible-light photocatalysts are not required for activation, and alkyl- and arylthioglycosides not bearing the p-methoxystyrene are inert to these conditions. Experimental and computational evidence for an intervening electron donor-acceptor complex, which is necessary for reactivity, is provided. Yields with primary, secondary, and tertiary alcohol acceptors range from moderate to high. Complete ß-selectivity can be attained through neighboring-group participation.

8.
J Phys Chem A ; 119(1): 172-82, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25490119

ABSTRACT

The π-π stacking interaction between lumiflavin and a number of π-electron-rich molecules has been studied by density functional theory using several new-generation density functionals. Six known lumiflavin-aromatic adducts were used and the models were evaluated by comparing the geometry and energetics with experimental results. The study found that dispersion-corrected and hybrid functionals with larger (>50%) Hartree-Fock exchanges produced superior results in modeling thermodynamic characteristics of these complexes. The functional producing the best energetics for these model systems was used to study the stacking interactions of lumiflavin with biologically relevant aromatic groups. Additionally, the reduction of flavin-in the presence of both a hydride donor and a nondonor π-electronic system was also studied. Weak interactions were observed in the stacked lumiflavin complexes of benzene, phenol, and indole, mimicking phenyl alanine, tryptophan, and tyrosine side chains, respectively, of an enzyme. The stacked complex of naphthalene and flavin showed little change in flavin's redox potential indicating insignificant effect on the thermodynamics of the hydride transfer reaction. In contrast, the hydride transfer reaction with the hydride donor N-methyl nicotinamide tells a different story, as the transition state was found to be strongly impacted by the stacking interactions. A comparison of performance between the density functional theory (DFT) and the computationally less expensive dispersion-corrected self-consistent density functional tight-binding (SCC-DFTB-D) theory revealed that the latter produces consistent energetics for this hydride transfer reaction and additional DFT-computed perturbative corrections could significantly improve these results.


Subject(s)
Flavins/chemistry , Quantum Theory , Thermodynamics , Binding Sites , Kinetics , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...