Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 380(6647): 812-817, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37228198

ABSTRACT

Iron is an essential nutrient that regulates productivity in ~30% of the ocean. Compared with deep (>2000 meter) hydrothermal activity at mid-ocean ridges that provide iron to the ocean's interior, shallow (<500 meter) hydrothermal fluids are likely to influence the surface's ecosystem. However, their effect is unknown. In this work, we show that fluids emitted along the Tonga volcanic arc (South Pacific) have a substantial impact on iron concentrations in the photic layer through vertical diffusion. This enrichment stimulates biological activity, resulting in an extensive patch of chlorophyll (360,000 square kilometers). Diazotroph activity is two to eight times higher and carbon export fluxes are two to three times higher in iron-enriched waters than in adjacent unfertilized waters. Such findings reveal a previously undescribed mechanism of natural iron fertilization in the ocean that fuels regional hotspot sinks for atmospheric CO2.


Subject(s)
Carbon Dioxide , Iron , Nitrogen Fixation , Phytoplankton , Seawater , Ecosystem , Iron/metabolism , Oceans and Seas , Phytoplankton/growth & development , Phytoplankton/metabolism , Seawater/chemistry , Seawater/microbiology , Carbon Cycle , Carbon Dioxide/metabolism
2.
Microorganisms ; 10(8)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36014073

ABSTRACT

In the Subantarctic sector of the Southern Ocean, vertical entrainment of iron (Fe) triggers the seasonal productivity cycle but diminishing physical supply during the spring to summer transition forces microbial assemblages to rapidly acclimate. Here, we tested how phytoplankton and bacteria within an isolated eddy respond to different dissolved Fe (DFe)/ligand inputs. We used three treatments: one that mimicked the entrainment of new DFe (Fe-NEW), another in which DFe was supplied from bacterial regeneration of particles (Fe-REG), and a control with no addition of DFe (Fe-NO). After 6 days, 3.5 (Fe-NO, Fe-NEW) to 5-fold (Fe-REG) increases in Chlorophyll a were observed. These responses of the phytoplankton community were best explained by the differences between the treatments in the amount of DFe recycled during the incubation (Fe-REG, 15% recycled c.f. 40% Fe-NEW, 60% Fe-NO). This additional recycling was more likely mediated by bacteria. By day 6, bacterial production was comparable between Fe-NO and Fe-NEW but was approximately two-fold higher in Fe-REG. A preferential response of phytoplankton (haptophyte-dominated) relative to high nucleic acid (HNA) bacteria was also found in the Fe-REG treatment while the relative proportion of diatoms increased faster in the Fe-NEW and Fe-NO treatments. Comparisons between light and dark incubations further confirmed the competition between picophytoplankton and HNA for DFe. Overall, our results demonstrate great versatility by microorganisms to use different Fe sources that results in highly efficient Fe recycling within surface waters. This study also encourages future research to further investigate the interactions between functional groups of microbes (e.g. HNA and cyanobacteria) to better constraint modeling in Fe and carbon biogeochemical cycles.

3.
Philos Trans A Math Phys Eng Sci ; 375(2088): 20160440, 2017 Mar 06.
Article in English | MEDLINE | ID: mdl-31305630

ABSTRACT

[This corrects the article DOI: 10.1098/rsta.2015.0299.].

4.
Philos Trans A Math Phys Eng Sci ; 374(2081)2016 Nov 28.
Article in English | MEDLINE | ID: mdl-29035263

ABSTRACT

Geoengineering to mitigate climate change has long been proposed, but remains nebulous. Exploration of the feasibility of geoengineering first requires the development of research governance to move beyond the conceptual towards scientifically designed pilot studies. Fortuitously, 12 mesoscale (approx. 1000 km2) iron enrichments, funded to investigate how ocean iron biogeochemistry altered Earth's carbon cycle in the geological past, provide proxies to better understand the benefits and drawbacks of geoengineering. The utility of these iron enrichments in the geoengineering debate is enhanced by the GEOTRACES global survey. Here, we outline how GEOTRACES surveys and process studies can provide invaluable insights into geoengineering. Surveys inform key unknowns including the regional influence and magnitude of modes of iron supply, and stimulate iron biogeochemical modelling. These advances will enable quantification of interannual variability of iron supply to assess whether any future purposeful multi-year iron-fertilization meets the principle of 'additionality' (sensu Kyoto protocol). Process studies address issues including upscaling of geoengineering, and how differing iron-enrichment strategies could stimulate wide-ranging biogeochemical outcomes. In summary, the availability of databases on both mesoscale iron-enrichment studies and the GEOTRACES survey, along with modelling, policy initiatives and legislation have positioned the iron-enrichment approach as a robust multifaceted test-bed to assess proposed research into climate intervention.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

5.
Chemosphere ; 80(11): 1314-20, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20598342

ABSTRACT

The behavior and stability of dissolved reduced glutathione (GSH), an environmental antioxidant and metal transporter, is poorly known in natural waters. Glutathione oxidation rates were determined in both fresh- and brackish waters artificially submitted to different radiation wavebands. Photo-oxidation of GSH followed pseudo-first order kinetics, with half-lives ranging from 4 to 30h in natural freshwater, and from 1.6 to 7h in saltwater, with generally shorter persistence in UV-irradiated surface waters than in dark treatments. Chloride was shown to indirectly promote GSH photo-oxidation, probably through its role in the formation of radicals. The addition of Cu(II) to synthetic waters resulted in the rapid oxidation of GSH. The addition of Hg(II), a metal with strong affinity for thiols, protected GSH from oxidation by Cu(II) in the dark, but not under UV radiation. We conclude that UV-induced photo-oxidation is a key process altering the fate of GSH in natural waters. Also, the formation of stable GSH-Hg complexes could increase the bioavailability of Hg towards microorganisms in aquatic systems.


Subject(s)
Copper/chemistry , Glutathione/chemistry , Mercury/chemistry , Ultraviolet Rays , Water Pollutants, Chemical/chemistry , Carbon/analysis , Chlorides/chemistry , Fresh Water/chemistry , Glutathione/analysis , Kinetics , Oxidation-Reduction , Photochemical Processes , Salinity , Seawater/chemistry , Sodium Chloride/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...