Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Mol Histol ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898139

ABSTRACT

Perivascular adipose tissue (PVAT) is an adipose layer, surrounding blood vessels, with a local modulatory role. Interleukin-10 (IL-10) has been shown to modulate vascular tissue. This study aimed to characterize the endogenous role of IL-10 in vascular remodeling, and PVAT phenotyping. Thoracic aortic segments from control (C57BL/6J) and IL-10 knockout (IL-10-/-) male mice were used. Analyzes of aorta/PVAT morphometry, and elastin, collagen and reticulin deposition were performed. Tissue uncoupling protein 1 (UCP1) was accessed by Western blotting. Endogenous absence of IL-10 reduced total PVAT area (p = 0.0310), and wall/lumen ratio (p = 0.0024), whereas increased vascular area and thickness (p < 0.0001). Total collagen deposition was augmented in IL-10-/-, but under polarized light, the reduction of collagen-I (p = 0.0075) and the increase of collagen-III (p = 0.0055) was found, simultaneously with reduced elastic fibers deposition (p = 0.0282) and increased deposition of reticular fibers (p < 0.0001). Adipocyte area was augmented in the IL-10 absence (p = 0.0225), and UCP1 expression was reduced (p = 0.0420). Moreover, relative frequency of white adipose cells and connective tissue was augmented in IL-10-/- (p < 0.0001), added to a reduction in brown adipose cells (p < 0.0001). Altogether, these data characterize aorta PVAT from IL-10-/- as a white-like adipocyte phenotype. Endogenous IL-10 prevents vascular remodeling and favors a brown-like adipocyte phenotype, suggesting a modulatory role for IL-10 in PVAT plasticity.

2.
Pharmacol Res ; 191: 106749, 2023 05.
Article in English | MEDLINE | ID: mdl-37004830

ABSTRACT

Left congenital diaphragmatic hernia (CDH) can lead to pulmonary arteries abnormalities in the contralateral and ipsilateral sides of the diaphragm. Nitric oxide (NO) is the main therapy used to attenuate the vascular effects of CDH, but it is not always effective. We hypothesized that the left and right pulmonary arteries do not respond similarly to NO donors during CDH. Therefore, vasorelaxant responses of the left and right pulmonary arteries to sodium nitroprusside (SNP, a NO donor) were determined in a rabbit experimental model of left CDH. CDH was surgically induced in the fetuses of rabbits on the 25th day of pregnancy. On the 30th day of pregnancy, a midline laparotomy was performed to access the fetuses. The fetuses' left and right pulmonary arteries were isolated and mounted in myograph chambers. Vasodilation was evaluated by cumulative concentration-effect curves to SNP. Protein expression of guanylate cyclase isoforms (GCα, GCß) and the α isoform of cGMP-dependent protein kinase 1 (PKG1α), and the concentration of NO and cGMP were determined in the pulmonary arteries. The left and right pulmonary arteries of newborns with CDH exhibited increased vasorelaxant responses to SNP (i.e. the potency of SNP was increased) compared to the control group. GCα, GCß, and PKG1α expression were decreased, while NO and cGMP concentrations were increased in the pulmonary arteries of newborns with CDH compared to the control group. The increased cGMP mobilization may be responsible for the increased vasorelaxant responses to the SNP in the pulmonary arteries during left CDH.


Subject(s)
Hernias, Diaphragmatic, Congenital , Animals , Pregnancy , Female , Rabbits , Hernias, Diaphragmatic, Congenital/metabolism , Pulmonary Artery , Nitric Oxide/metabolism , Lung , Vasodilator Agents/pharmacology
3.
Br J Pharmacol ; 179(12): 2938-2952, 2022 06.
Article in English | MEDLINE | ID: mdl-34978070

ABSTRACT

BACKGROUND AND PURPOSE: Metabolic and vascular dysfunction are common features of obesity. Aryl hydrocarbon receptor (AhR) regulates lipid metabolism and vascular homeostasis, but whether vascular AhR are activated in obesity or have a protective and/or harmful effects on vascular function in obesity are unknown. Our study addresses whether AhR activation contributes to obesity-associated vascular dysfunction and the mechanisms involved in these AhR effects. EXPERIMENTAL APPROACH: Male AhR KO (Ahr-/- ) and WT mice were fed either control or a HF (high-fat) diet for 10 weeks. Metabolic and inflammatory parameters were measured in serum and adipose tissue. Vascular reactivity (isometric force) was evaluated using a myography. Endothelial NOS (eNOS) and AhR protein expression was determined by western blot, Cyp1A1 and Nos3 gene expression by RT-PCR and.NO production was quantified by DAF fluorescence. KEY RESULTS: HF diet increased total serum HDL and LDL, as well as vascular AhR protein expression and proinflammatory cytokines in the adipose tissue. HF diet decreased endothelium-dependent vasodilation. AhR deletion protected mice from HF diet-induced dyslipidaemia, weight gain and inflammatory processes. HF diet-induced endothelial dysfunction was attenuated in Ahr-/- mice. Vessels from Ahr-/- mice exhibited a greater NO reserve. In cultured endothelial cells, lysophosphatidylcholine (LPC) a major component of LDL and oxidized LDL [oxLDL]) reduced Nos3 gene expression and NO production. Antagonism of the AhR inhibited LPC effects on endothelial cells and induced decreased endothelium-dependent vasodilation. CONCLUSION AND IMPLICATIONS: AhR deletion attenuates HF diet-induced dyslipidaemia and vascular dysfunction by improving eNOS/NO signalling. Targeting AhRs may prevent obesity-associated vascular dysfunction.


Subject(s)
Diet, High-Fat , Receptors, Aryl Hydrocarbon , Animals , Diet, High-Fat/adverse effects , Endothelial Cells/metabolism , Endothelium, Vascular , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Vasodilation/physiology
4.
Exp Parasitol ; 222: 108078, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33485874

ABSTRACT

The blood flow in the mesenteric region is crucial for nutrient absorption and immune response in the gastrointestinal tract. The presence of nematodes or their excreted/secreted products seems to provoke vascular dysfunction. However, it is unclear whether and how the intestinal nematodes with habitat in the intestinal niche could affect the mesenteric vascular resistance. In this study, male Wistar rats were infected with 2000 larvae of S. venezuelensis, and experiments were conducted at 0 (non-infected control), 10 or 30 days post-infection (DPI). Eggs were counted in rats' feces and adult worms recovered from the small intestine. Second- or third-order mesenteric arteries were extracted for concentration-response curves (CRC) to phenylephrine [PE; in the presence or absence of L-NAME or indomethacin] and acetylcholine. The number of eggs and adult worms were significantly higher in the 10 DPI group than those of 30 DPI group. Augmented PE-induced contraction was seen after 30 DPI compared to 10 DPI or control group. Hypercontractility to PE was partially prevented by L-NAME and wholly abolished by indomethacin incubation. Endothelium-dependent relaxation and endothelial nitric oxide synthase expression were unchanged among groups. COX-1 and COX-2 display a different pattern of expression over the infection. Hypercontractility observed in mesenteric resistance arteries in the resolution time of S. venezuelensis infection may represent systemic damage, which can generate significant cardiovascular and gastrointestinal repercussions.


Subject(s)
Endothelial Cells/physiology , Intestines/blood supply , Mesenteric Arteries/physiopathology , Strongyloides/physiology , Strongyloidiasis/physiopathology , Animals , Feces/parasitology , Female , Gerbillinae , Male , Muscle Contraction , Neglected Diseases/physiopathology , Parasite Egg Count , Random Allocation , Rats , Rats, Wistar
5.
Life Sci ; 262: 118552, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33035583

ABSTRACT

AIMS: Angiotensin-1-7 [Ang-(1-7)] is an essential peptide of the renin-angiotensin system that promotes benefits modulating effects in different tissues. Similarly, interleukin-10 (IL-10) exhibits an immunomodulatory action on the vasculature. This study aimed to evaluate whether Ang-(1-7) levels attenuates vascular contractile response, mediated by IL-10-pathway (JAK1/STAT3/IL-10). MAIN METHODS: Aortas from male mice C57BL/6J and knockout for IL-10 (IL-10-/-) were incubated with Ang-(1-7) [10 µM] or vehicle, during 5 min, 1 h, 6 h, 12 h, and 24 h. Concentration-response curves to phenylephrine, western blotting, and flow cytometry analysis was performed to evaluate the contractile response, protein expression, and IL-10 levels, respectively. KEY FINDINGS: Incubation with Ang-(1-7) produced a time-dependent increase in Janus kinases 1 (JAK1) expression, as well as increased expression and activity of the signal transducer and activator of transcription 3 (STAT3) protein. However, this effect was not observed in knockout animals for IL-10. After 12 h of Ang-(1-7) treatment, arteries from control mice displayed decreased vascular reactivity to phenylephrine, but this effect was not observed in the absence of endogenous IL-10. Additionally, incubation with Ang-(1-7) augments IL-10 levels after 6 h, 12 h, and 24 h of incubation. SIGNIFICANCE: These results demonstrated the role of Ang-(1-7) in the IL-10 signaling pathway and its effects in the vascular contractility response. Thus, these findings suggest a new synergic action where Ang-(1-7) and IL-10 converge into a protective mechanism against vascular dysfunction.


Subject(s)
Angiotensin I/metabolism , Interleukin-10/genetics , Janus Kinase 1/metabolism , Peptide Fragments/metabolism , STAT3 Transcription Factor/metabolism , Vasoconstriction/physiology , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenylephrine/pharmacology , Time Factors , Vasoconstriction/drug effects
6.
Eur J Histochem ; 63(4)2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31833328

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that is activated by interleukin (IL)-6 and IL-10 that generate nearly opposing responses. The suppressor of cytokine signaling 3 (SOCS3) is the negative regulator of STAT3 and plays an important role in the negative regulation of the inflammatory process. Evidence has shown the importance of STAT3 and SOCS3 during implantation and normal pregnancy. However, little is known about the relationship of both factors under hyperglycemic condition. The aim of this study was to evaluate the placenta regions exhibiting immunopositivity for STAT3 and SOCS3 in hyperglycemic rats, as well as correlate these proteins with IL-10 and IL-6 levels. It was observed increased expression of STAT3 at the labyrinth (approximately 47% of increase compared to control) and junctional zone (approximately 32% of increase compared to control) from hyperglycemic placentas. Similar results were observed to SOCS3 (approximately 71% -labyrinth- and 53% -junctional zone- of increase compared to control). The levels of IL-10 were augmented at hyperglycemic placentas (approximately 1.5 fold of increase) and they were positively correlated with the increase of STAT3 at the labyrinth and SOCS at junctional zone. Therefore, under hyperglycemic conditions, the relation between STAT3 and SOCS3 was changed, leading to unbalance of the cytokine profile.


Subject(s)
Hyperglycemia/metabolism , Placenta/metabolism , STAT3 Transcription Factor/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Animals , Antibodies/immunology , Female , Goats , Hyperglycemia/pathology , Immunohistochemistry , Interleukin-10/metabolism , Interleukin-6/metabolism , Placenta/pathology , Pregnancy , Rabbits , Rats, Wistar , STAT3 Transcription Factor/immunology , Suppressor of Cytokine Signaling 3 Protein/immunology
7.
Fundam Clin Pharmacol ; 33(1): 31-40, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30144156

ABSTRACT

The activation of extracellular signal-regulated kinase 1 and 2 (ERK 1/2) pathway promotes increased vascular contractility in angiotensin II (Ang II)-induced hypertensive mice. Interleukin-10 (IL-10) is an immune-regulatory cytokine with the ability to prevent vascular hypercontractility during hypertension. We hypothesized that IL-10 would downregulate vascular ERK 1/2 activation during Ang II-induced hypertension. Wild-type (WT) or IL-10 knockout (IL-10-/- ) mice received Ang II infusion (90 ηg.min) or vehicle (saline), via osmotic mini-pumps (0.25 µL/h for 14 days), whereas another WT group were infused with exogenous IL-10 (0.5 ηg/min, 14 days) simultaneously, or not, with Ang II. Aortic rings were mounted in a myograph, and concentration-response curves to phenylephrine were evaluated, in the presence or absence of ERK 1/2 inhibitor (PD98059, 10 µm, 40 min). Protein expression of vascular ERK 1/2 was determined by Western blot. Ang II infusion increased the maximal contractile response in both WT and IL-10-/- mice. Concomitant infusion of IL-10 and Ang II prevented hypercontractility in the vasculature. Exogenous IL-10 infusion prevented ERK 1/2 activation and hypercontractility, induced by Ang II. These findings suggest that IL-10 negatively modulates ERK 1/2 activation and prevents hypercontractility during Ang II-induced hypertension.


Subject(s)
Angiotensin II/administration & dosage , Aorta/metabolism , Hypertension/physiopathology , Interleukin-10/metabolism , Animals , Blotting, Western , Disease Models, Animal , Flavonoids/pharmacology , Interleukin-10/administration & dosage , Interleukin-10/genetics , MAP Kinase Signaling System , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phenylephrine/pharmacology
8.
Life Sci ; 209: 78-84, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30075176

ABSTRACT

AIMS: The interleukin-10 (IL-10) is an immuno-regulatory cytokine that plays a protective effect in the vasculature. IL-10 binding to its receptor, activating the IL-10/JAK1/STAT3 cascade to exert its effects. Therefore, STAT3 phosphorylation is essential for IL-10 actions. O-Glycosylation with linked ß-N-acetylglucosamine (O-GlcNAc) is a post-translational modification able to regulate many proteins by interfering with protein on a phosphorylation level. Our aim was to determine whether O-GlcNAc promotes the inhibition of IL-10-pathway (JAK1/STAT3/IL-10), inactivationg its action in the vasculature. MAIN METHODS: Mice (C57BL/6) aortic segments were incubated with vehicle or Thiamet G (0.1 mM, for 24 h) to increase global O-GlcNAc levels. Aortas from knockout mice for IL-10 were also used. Vascular reactivity and western blot tests were performed to evaluate protein expression. KEY FINDINGS: High levels of O-GlcNAc, induced by Thiamet G incubation, increased vascular expression of JAK1, but decreased expression and activity of STAT3. In addition, IL-10 levels were diminished in arteries treated with Thiamet G. Absence of IL-10, as well as augmented O-GlcNAcylation, increased vascular reactivity to constrictor stimuli, an effect that was abolished by ERK 1/2 inhibitor. High levels of O-GlcNAc and the absence of IL-10 also leads to increased vascular expression of ERK1/2. SIGNIFICANCE: Our data suggest that O-GlcNAc modification seems to (dys)regulate IL-10 signaling pathway and consequently, compromise the protective effect of this cytokine in vasculature. It is possible that there is a promising relationship in pathophysiological conditions where changes in O-GlcNAcylation and IL-10 levels are observed, such as hypertension and diabetes.


Subject(s)
Acetylglucosamine/chemistry , Interleukin-10/chemistry , Interleukin-10/metabolism , Protein Processing, Post-Translational , Vasoconstriction , Animals , Glycosylation , Signal Transduction
9.
Life Sci ; 205: 18-25, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29746846

ABSTRACT

AIMS: Hyperglycemia increases glycosylation with O-linked N-acetyl-glucosamine (O-GlcNAc) contributing to placental dysfunction and fetal growth impairment. Our aim was to determine how O-GlcNAc levels are affected by hyperglycemia and the O-GlcNAc distribution in different placental regions. MAIN METHODS: Female Wistar rats were divided into the following groups: severe hyperglycemia (>300 mg/dL; n = 5); mild hyperglycemia (>140 mg/dL, at least than two time points during oral glucose tolerance test; n = 7) or normoglycemia (<120 mg/dL; n = 6). At 21 days of pregnancy, placental tissue was collected and processed for morphometry and immunohistochemistry analyses, or properly stored at -80 °C for protein quantification by western blot. KEY FINDINGS: Placental index was increased only in severe hyperglycemic rats. Morphometric analysis showed increased junctional zone and decreased labyrinth region in placentas exclusively from the severe hyperglycemic group. Proteins targeted by O-GlcNAc were detected in all regions, with increased O-GlcNAc levels in the hyperglycemic group compared to control and mild hyperglycemic rats. Proteins in endothelial and trophoblast cells were the main target for O-GlcNAc. Whereas no changes in O-GlcNAc transferase (OGT) expression were detected, O-GlcNAcase (OGA) expression was reduced in placentas from the severe hyperglycemic group and augmented in placentas from the mild hyperglycemic group, compared with their respective control groups. SIGNIFICANCE: Placental O-GlcNAc overexpression may contribute to placental dysfunction, as indicated by the placental index. Additionally, morphometric alterations, occurring simultaneously with increased O-GlcNAc accumulation in the placental tissue may contribute to placental dysfunction during hyperglycemia.


Subject(s)
Acetylglucosamine/metabolism , Blood Glucose/metabolism , Pregnancy Proteins/metabolism , Animals , Endothelial Cells/metabolism , Female , Glucose Tolerance Test , Hyperglycemia/metabolism , N-Acetylglucosaminyltransferases/metabolism , Pregnancy , Rats , Rats, Wistar , Trophoblasts/metabolism
10.
Clin Sci (Lond) ; 130(11): 871-80, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26929437

ABSTRACT

Obesity and high fat intake induce alterations in vascular function and structure. Aberrant O-GlcNAcylation (O-GlcNAc) of vascular proteins has been implicated in vascular dysfunction associated with cardiovascular and metabolic diseases. In the present study, we tested the hypothesis that high-fat diet (HFD)-mediated increases in O-GlcNAc-modified proteins contribute to cerebrovascular dysfunction. O-GlcNAc-protein content was increased in arteries from male Wistar rats treated with a HFD (45% fat) for 12 weeks compared with arteries from rats on control diet (CD). HFD augmented body weight [(g) 550±10 compared with 502±10 CD], increased plasma triacylglycerols [(mg/dl) 160±20 compared with 95±15 CD] and increased contractile responses of basilar arteries to serotonin [5-hydroxytryptamine (5-HT)] [(pD2) 7.0±0.1 compared with 6.7±0.09 CD] and the thromboxane analogue 9,11-dideoxy-9α,11α-methanoepoxy prostaglandin F2α (U-46619) [(pD2) 7.2±0.1 compared with 6.8±0.09 CD]. Of importance, increased levels of O-GlcNAc [induced by 24 h-incubation of vessels with a potent inhibitor of O-GlcNAcase (OGA), O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate (PugNAc)] increased basilar artery contractions in response to U-46619 [(pD2) 7.4±0.07 compared with 6.8±0.08 CD] and 5-HT [(pD2) 7.5±0.06 compared with 7.1±0.1 CD]. Vessels from rats on the HFD for 12 weeks and vessels treated with PugNAc displayed increased phosphorylation of p38 (Thr(180/182)) and extracellular signal-regulated kinase 1/2 (Erk1/2) (Ser(180/221)). Increased 5HT-induced contractions in arteries from rats on the HFD or in arteries incubated with PugNAc were abrogated by mitogen-activated protein kinase (MAPK) inhibitors. Our data show that HFD augments cerebrovascular O-GlcNAc and this modification contributes to increased contractile responses and to the activation of the MAPK pathway in the rat basilar artery.


Subject(s)
Acetylglucosamine/metabolism , Cerebral Arteries/metabolism , Diet, High-Fat , Hyperlipidemias/metabolism , Mitogen-Activated Protein Kinases/metabolism , Obesity/metabolism , beta-N-Acetylhexosaminidases/metabolism , Animals , Male , N-Acetylglucosaminyltransferases/metabolism , Phosphorylation/physiology , Protein Processing, Post-Translational/physiology , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...