Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
CRISPR J ; 7(2): 88-99, 2024 04.
Article in English | MEDLINE | ID: mdl-38564197

ABSTRACT

Rhodnius prolixus is currently the model vector of choice for studying Chagas disease transmission, a debilitating disease caused by Trypanosoma cruzi parasites. However, transgenesis and gene editing protocols to advance the field are still lacking. Here, we tested protocols for the maternal delivery of CRISPR-Cas9 (clustered regularly spaced palindromic repeats/Cas-9 associated) elements to developing R. prolixus oocytes and strategies for the identification of insertions and deletions (indels) in target loci of resulting gene-edited generation zero (G0) nymphs. We demonstrate successful gene editing of the eye color markers Rp-scarlet and Rp-white, and the cuticle color marker Rp-yellow, with highest effectiveness obtained using Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) with the ovary-targeting BtKV ligand. These results provide proof of concepts for generating somatic mutations in R. prolixus and potentially for generating germ line-edited lines in triatomines, laying the foundation for gene editing protocols that could lead to the development of novel control strategies for vectors of Chagas disease.


Subject(s)
Chagas Disease , Rhodnius , Animals , Female , Gene Editing/methods , Rhodnius/genetics , Rhodnius/parasitology , CRISPR-Cas Systems , Insect Vectors/parasitology , Chagas Disease/genetics , Chagas Disease/parasitology
2.
Cell Rep ; 42(8): 112842, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37480566

ABSTRACT

Development of effective therapies against SARS-CoV-2 infections relies on mechanistic knowledge of virus-host interface. Abundant physical interactions between viral and host proteins have been identified, but few have been functionally characterized. Harnessing the power of fly genetics, we develop a comprehensive Drosophila COVID-19 resource (DCR) consisting of publicly available strains for conditional tissue-specific expression of all SARS-CoV-2 encoded proteins, UAS-human cDNA transgenic lines encoding established host-viral interacting factors, and GAL4 insertion lines disrupting fly homologs of SARS-CoV-2 human interacting proteins. We demonstrate the utility of the DCR to functionally assess SARS-CoV-2 genes and candidate human binding partners. We show that NSP8 engages in strong genetic interactions with several human candidates, most prominently with the ATE1 arginyltransferase to induce actin arginylation and cytoskeletal disorganization, and that two ATE1 inhibitors can reverse NSP8 phenotypes. The DCR enables parallel global-scale functional analysis of SARS-CoV-2 components in a prime genetic model system.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , SARS-CoV-2/genetics , Drosophila , Actins , Animals, Genetically Modified
3.
Genetics ; 221(2)2022 05 31.
Article in English | MEDLINE | ID: mdl-35445704

ABSTRACT

Pigmentation in insects has been linked to mate selection and predator evasion, thus representing an important aspect for natural selection. Insect body color is classically associated to the activity of tyrosine pathway enzymes, and eye color to pigment synthesis through the tryptophan and guanine pathways, and their transport by ATP-binding cassette proteins. Among the hemiptera, the genetic basis for pigmentation in kissing bugs such as Rhodnius prolixus, that transmit Chagas disease to humans, has not been addressed. Here, we report the functional analysis of R. prolixus eye and cuticle pigmentation genes. Consistent with data for most insect clades, we show that knockdown for yellow results in a yellow cuticle, while scarlet and cinnabar knockdowns display red eyes as well as cuticle phenotypes. In addition, tyrosine pathway aaNATpreto knockdown resulted in a striking dark cuticle that displays no color pattern or UV reflectance. In contrast, knockdown of ebony and tan, that encode N-beta-alanyl dopamine hydroxylase branch tyrosine pathway enzymes, did not generate the expected dark and light brown phenotypes, respectively, as reported for other insects. We hypothesize that R. prolixus, which requires tyrosine pathway enzymes for detoxification from the blood diet, evolved an unusual strategy for cuticle pigmentation based on the preferential use of a color erasing function of the aaNATpreto tyrosine pathway branch. We also show that genes classically involved in the generation and transport of eye pigments regulate red body color in R. prolixus. This is the first systematic approach to identify the genes responsible for the generation of color in a blood-feeding hemiptera, providing potential visible markers for future transgenesis.


Subject(s)
Rhodnius , Animals , Pigmentation/genetics , Rhodnius/genetics , Tyrosine
4.
Curr Opin Insect Sci ; 49: 1-7, 2022 02.
Article in English | MEDLINE | ID: mdl-34607082

ABSTRACT

Embryonic dorsal-ventral (DV) patterning by Bone Morphogenetic Proteins (BMPs) is a conserved feature of Bilateria, based on graded BMP activity set up by diffusible BMP ligands and Chordin/Sog antagonists. In the fly Drosophila melanogaster BMP function is secondary to patterning by the Toll pathway, suggesting a more restricted role for BMPs in insects. With widespread genome sequencing technologies allied to functional analysis in a growing number of species, recent work has shown that BMP's role in DV patterning relative to Toll varies among insect orders. Further, the role of BMP antagonists to set up BMP gradients is also greatly diversified. Here we review the recent findings concerning the role of BMP in the DV patterning of insects and address the potential aspects that may have co-evolved with BMPs to attain this functional divergence.


Subject(s)
Body Patterning , Drosophila melanogaster , Animals , Body Patterning/genetics , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Drosophila melanogaster/metabolism , Insecta/genetics , Insecta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...