Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JACC Basic Transl Sci ; 8(5): 501-514, 2023 May.
Article in English | MEDLINE | ID: mdl-37325396

ABSTRACT

Coronary microvascular disease (CMD) caused by obesity and diabetes is major contributor to heart failure with preserved ejection fraction; however, the mechanisms underlying CMD are not well understood. Using cardiac magnetic resonance applied to mice fed a high-fat, high-sucrose diet as a model of CMD, we elucidated the role of inducible nitric oxide synthase (iNOS) and 1400W, an iNOS antagonist, in CMD. Global iNOS deletion prevented CMD along with the associated oxidative stress and diastolic and subclinical systolic dysfunction. The 1400W treatment reversed established CMD and oxidative stress and preserved systolic/diastolic function in mice fed a high-fat, high-sucrose diet. Thus, iNOS may represent a therapeutic target for CMD.

2.
Phys Med Biol ; 68(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37192635

ABSTRACT

Objective.A novel magnetic resonance imaging (MRI) radio-frequency (RF) coil design, termed an integrated RF/wireless (iRFW) coil design, can simultaneously perform MRI signal reception and far-field wireless data transfer with the same coil conductors between the coil in the scanner bore and an access point (AP) on the scanner room wall. The objective of this work is to optimize the design inside the scanner bore to provide a link budget between the coil and the AP for the wireless transmission of MRI data.Approach.Electromagnetic simulations were performed at the Larmor frequency of a 3T scanner and in a WiFi wireless communication band to optimize the radius and position of an iRFW coil located near the head of a human model inside the scanner bore, which were validated by performing both imaging and wireless experiments.Main Results.The simulated iRFW coil with a 40 mm radius positioned near the model forehead provided: a signal-to-noise ratio (SNR) comparable to that of a traditional RF coil with the same radius and position, a power absorbed by the human model within regulatory limits, and a gain pattern in the scanner bore resulting in a link budget of 51.1 dB between the coil and an AP located behind the scanner 3 m from the isocenter, which would be sufficient to wirelessly transfer MRI data acquired with a 16-channel coil array. The SNR, gain pattern, and link budget for initial simulations were validated by experimental measurements in an MRI scanner and anechoic chamber to provide confidence in this methodology. These results show that the iRFW coil design must be optimized within the scanner bore for the wireless transfer of MRI data.Significance.The MRI RF coil array coaxial cable assembly connected to the scanner increases patient setup time, can present a serious burn risk to patients and is an obstacle to the development of the next generation of lightweight, flexible or wearable coil arrays that provide an improved coil sensitivity for imaging. Significantly, the RF coaxial cables and corresponding receive chain electronics can be removed from within the scanner by integrating the iRFW coil design into an array for the wireless transmission of MRI data outside of the bore.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Humans , Phantoms, Imaging , Magnetic Resonance Imaging/methods , Signal-To-Noise Ratio , Equipment Design
3.
Public Underst Sci ; 27(7): 756-771, 2018 10.
Article in English | MEDLINE | ID: mdl-29058988

ABSTRACT

This study examines the conflation of terms such as "knowledge" and "understanding" in peer-reviewed literature, and tests the hypothesis that little current research clearly distinguishes between importantly distinct epistemic states. Two sets of data are presented from papers published in the journal Public Understanding of Science. In the first set, the digital text analysis tool, Voyant, is used to analyze all papers published in 2014 for the use of epistemic success terms. In the second set of data, all papers published in Public Understanding of Science from 2010-2015 are systematically analyzed to identify instances in which epistemic states are empirically measured. The results indicate that epistemic success terms are inconsistently defined, and that measurement of understanding, in particular, is rarely achieved in public understanding of science studies. We suggest that more diligent attention to measuring understanding, as opposed to mere knowledge, will increase efficacy of scientific outreach and communication efforts.

SELECTION OF CITATIONS
SEARCH DETAIL
...