Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Clin Med ; 13(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38398291

ABSTRACT

BACKGROUND: Virtual hospital-at-home care might be an alternative to standard hospital care for patients with infectious diseases. In this study, we explore the potential for virtual hospital-at-home care and a potential design for this population. METHODS: This was a retrospective cohort study of internal medicine patients suspected of infectious diseases, admitted between 1 January and 31 December 2019. We collected information on delivered care during emergency department visits, the first 24 h, between 24 and 72 h, and after 72 h of admission. Care components that could be delivered at home were combined into care packages, and the potential number of eligible patients per package was described. The most feasible package was described in detail. RESULTS: 763 patients were included, mostly referred for general internal medicine (35%), and the most common diagnosis was lower respiratory tract infection (27%). The most frequently administered care components were laboratory tests, non-oral medication, and intercollegiate consultation. With a combination of telemonitoring, video consultation, non-oral medication administration, laboratory tests, oxygen therapy, and radiological diagnostics, 48% of patients were eligible for hospital-at-home care, with 35% already eligible directly after emergency department visits. CONCLUSION: While the potential for virtual hospital-at-home care is high, it depends greatly on which care can be arranged.

2.
PLoS One ; 18(5): e0286080, 2023.
Article in English | MEDLINE | ID: mdl-37228047

ABSTRACT

BACKGROUND: Continuous monitoring of vital signs is introduced at general hospital wards to detect patient deterioration. Interpretation and response currently rely on experience and expert opinion. This study aims to determine whether consensus exist among hospital professionals regarding the interpretation of vital signs of COVID-19 patients. In addition, we assessed the ability to recognise respiratory insufficiency and evaluated the interpretation process. METHODS: We performed a mixed methods study including 24 hospital professionals (6 nurses, 6 junior physicians, 6 internal medicine specialists, 6 ICU nurses). Each participant was presented with 20 cases of COVID-19 patients, including 4 or 8 hours of continuously measured vital signs data. Participants estimated the patient's situation ('improving', 'stable', or 'deteriorating') and the possibility of developing respiratory insufficiency. Subsequently, a semi-structured interview was held focussing on the interpretation process. Consensus was assessed using Krippendorff's alpha. For the estimation of respiratory insufficiency, we calculated the mean positive/negative predictive value. Interviews were analysed using inductive thematic analysis. RESULTS: We found no consensus regarding the patient's situation (α 0.41, 95%CI 0.29-0.52). The mean positive predictive value for respiratory insufficiency was high (0.91, 95%CI 0.86-0.97), but the negative predictive value was 0.66 (95%CI 0.44-0.88). In the interviews, two themes regarding the interpretation process emerged. "Interpretation of deviations" included the strategies participants use to determine stability, focused on finding deviations in data. "Inability to see the patient" entailed the need of hospital professionals to perform a patient evaluation when estimating a patient's situation. CONCLUSION: The interpretation of continuously measured vital signs by hospital professionals, and recognition of respiratory insufficiency using these data, is variable, which might be the result of different interpretation strategies, uncertainty regarding deviations, and not being able to see the patient. Protocols and training could help to uniform interpretation, but decision support systems might be necessary to find signs of deterioration that might otherwise go unnoticed.


Subject(s)
COVID-19 , Physicians , Humans , Patients' Rooms , COVID-19/diagnosis , Vital Signs , Hospitals
3.
Front Med (Lausanne) ; 10: 1295499, 2023.
Article in English | MEDLINE | ID: mdl-38249988

ABSTRACT

Background: Vital signs measurements on the ward are performed intermittently. This could lead to failure to rapidly detect patients with deteriorating vital signs and worsens long-term outcome. The aim of this study was to test the hypothesis that continuous wireless monitoring of vital signs on the postsurgical ward improves patient outcome. Methods: In this prospective, multicenter, stepped-wedge cluster randomized study, patients in the control group received standard monitoring. The intervention group received continuous wireless monitoring of heart rate, respiratory rate and temperature on top of standard care. Automated alerts indicating vital signs deviation from baseline were sent to ward nurses, triggering the calculation of a full early warning score followed. The primary outcome was the occurrence of new disability three months after surgery. Results: The study was terminated early (at 57% inclusion) due to COVID-19 restrictions. Therefore, only descriptive statistics are presented. A total of 747 patients were enrolled in this study and eligible for statistical analyses, 517 patients in the control group and 230 patients in the intervention group, the latter only from one hospital. New disability at three months after surgery occurred in 43.7% in the control group and in 39.1% in the intervention group (absolute difference 4.6%). Conclusion: This is the largest randomized controlled trial investigating continuous wireless monitoring in postoperative patients. While patients in the intervention group seemed to experience less (new) disability than patients in the control group, results remain inconclusive with regard to postoperative patient outcome due to premature study termination. Clinical trial registration: ClinicalTrials.gov, ID: NCT02957825.

4.
Interact J Med Res ; 11(2): e40289, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36256803

ABSTRACT

BACKGROUND: Continuous monitoring of vital signs has the potential to assist in the recognition of deterioration of patients admitted to the general ward. However, methods to efficiently process and use continuously measured vital sign data remain unclear. OBJECTIVE: The aim of this study was to explore methods to summarize continuously measured vital sign data and evaluate their association with respiratory insufficiency in COVID-19 patients at the general ward. METHODS: In this retrospective cohort study, we included patients admitted to a designated COVID-19 cohort ward equipped with continuous vital sign monitoring. We collected continuously measured data of respiratory rate, heart rate, and oxygen saturation. For each patient, 7 metrics to summarize vital sign data were calculated: mean, slope, variance, occurrence of a threshold breach, number of episodes, total duration, and area above/under a threshold. These summary measures were calculated over timeframes of either 4 or 8 hours, with a pause between the last data point and the endpoint (the "lead") of 4, 2, 1, or 0 hours, and with 3 predefined thresholds per vital sign. The association between each of the summary measures and the occurrence of respiratory insufficiency was calculated using logistic regression analysis. RESULTS: Of the 429 patients that were monitored, 334 were included for analysis. Of these, 66 (19.8%) patients developed respiratory insufficiency. Summarized continuously measured vital sign data in timeframes close to the endpoint showed stronger associations than data measured further in the past (ie, lead 0 vs 1, 2, or 4 hours), and summarized estimates over 4 hours of data had stronger associations than estimates taken over 8 hours of data. The mean was consistently strongly associated with respiratory insufficiency for the three vital signs: in a 4-hour timeframe without a lead, the standardized odds ratio for heart rate, respiratory rate, and oxygen saturation was 2.59 (99% CI 1.74-4.04), 5.05 (99% CI 2.87-10.03), and 3.16 (99% CI 1.78-6.26), respectively. The strength of associations of summary measures varied per vital sign, timeframe, and lead. CONCLUSIONS: The mean of a vital sign showed a relatively strong association with respiratory insufficiency for the majority of vital signs and timeframes. The type of vital sign, length of the timeframe, and length of the lead influenced the strength of associations. Highly associated summary measures and their combinations could be used in a clinical prediction score or algorithm for an automatic alarm system.

5.
PLoS One ; 17(7): e0268065, 2022.
Article in English | MEDLINE | ID: mdl-35797369

ABSTRACT

RATIONALE: Vital signs follow circadian patterns in both healthy volunteers and critically ill patients, which seem to be influenced by disease severity in the latter. In this study we explored the existence of circadian patterns in heart rate, respiratory rate and skin temperature of hospitalized COVID-19 patients, and aimed to explore differences in circadian rhythm amplitude during patient deterioration. METHODS: We performed a retrospective study of COVID-19 patients admitted to the general ward of a tertiary hospital between April 2020 and March 2021. Patients were continuously monitored using a wireless sensor and fingertip pulse oximeter. Data was divided into three cohorts: patients who recovered, patients who developed respiratory insufficiency and patients who died. For each cohort, a population mean cosinor model was fitted to detect rhythmicity. To assess changes in amplitude, a mixed-effect cosinor model was fitted. RESULTS: A total of 429 patients were monitored. Rhythmicity was observed in heartrate for the recovery cohort (p<0.001), respiratory insufficiency cohort (p<0.001 and mortality cohort (p = 0.002). Respiratory rate showed rhythmicity in the recovery cohort (p<0.001), but not in the other cohorts (p = 0.18 and p = 0.51). Skin temperature also showed rhythmicity in the recovery cohort (p<0.001), but not in the other cohorts (p = 0.22 and p = 0.12). For respiratory insufficiency, only the amplitude of heart rate circadian pattern increased slightly the day before (1.2 (99%CI 0.16-2.2, p = 0.002)). In the mortality cohort, the amplitude of heart rate decreased (-1.5 (99%CI -2.6- -0.42, p<0.001)) and respiratory rate amplitude increased (0.72 (99%CI 0.27-1.3, p = 0.002) the days before death. CONCLUSION: A circadian rhythm is present in heart rate of COVID-19 patients admitted to the general ward. For respiratory rate and skin temperature, rhythmicity was only found in patients who recover, but not in patients developing respiratory insufficiency or death. We found no consistent changes in circadian rhythm amplitude accompanying patient deterioration.


Subject(s)
COVID-19 , Respiratory Insufficiency , Circadian Rhythm/physiology , Heart Rate/physiology , Humans , Respiratory Rate , Retrospective Studies , Skin Temperature
6.
J Clin Monit Comput ; 36(2): 407-417, 2022 04.
Article in English | MEDLINE | ID: mdl-33575922

ABSTRACT

Continuous vital signs monitoring in post-surgical ward patients may support early detection of clinical deterioration, but novel alarm approaches are required to ensure timely notification of abnormalities and prevent alarm-fatigue. The current study explored the performance of classical and various adaptive threshold-based alarm strategies to warn for vital sign abnormalities observed during development of an adverse event. A classical threshold-based alarm strategy used for continuous vital signs monitoring in surgical ward patients was evaluated retrospectively. Next, (combinations of) six methods to adapt alarm thresholds to personal or situational factors were simulated in the same dataset. Alarm performance was assessed using the overall alarm rate and sensitivity to detect adverse events. Using a wireless patch-based monitoring system, 3999 h of vital signs data was obtained in 39 patients. The clinically used classical alarm system produced 0.49 alarms/patient/day, and alarms were generated for 11 out of 18 observed adverse events. Each of the tested adaptive strategies either increased sensitivity to detect adverse events or reduced overall alarm rate. Combining specific strategies improved overall performance most and resulted in earlier presentation of alarms in case of adverse events. Strategies that adapt vital sign alarm thresholds to personal or situational factors may improve early detection of adverse events or reduce alarm rates as compared to classical alarm strategies. Accordingly, further investigation of the potential of adaptive alarms for continuous vital signs monitoring in ward patients is warranted.


Subject(s)
Clinical Alarms , Arrhythmias, Cardiac , Humans , Monitoring, Physiologic/methods , Retrospective Studies , Vital Signs
7.
J Clin Med ; 10(24)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34945234

ABSTRACT

BACKGROUND: To ensure availability of hospital beds and improve COVID-19 patients' well-being during the ongoing pandemic, hospital care could be offered at home. Retrospective studies show promising results of deploying remote hospital care to reduce the number of days spent in the hospital, but the beneficial effect has yet to be established. METHODS: We conducted a single centre, randomised trial from January to June 2021, including hospitalised COVID-19 patients who were in the recovery stage of the disease. Hospital care for the intervention group was transitioned to the patient's home, including oxygen therapy, medication and remote monitoring. The control group received in-hospital care as usual. The primary endpoint was the number of hospital-free days during the 30 days following randomisation. Secondary endpoints included health care consumption during the follow-up period and mortality. RESULTS: A total of 62 patients were randomised (31 control, 31 intervention). The mean difference in hospital-free days was 1.7 (26.7 control vs. 28.4 intervention, 95% CI of difference -0.5 to 4.2, p = 0.112). In the intervention group, the index hospital length of stay was 1.6 days shorter (95% CI -2.4 to -0.8, p < 0.001), but the total duration of care under hospital responsibility was 4.1 days longer (95% CI 0.5 to 7.7, p = 0.028). CONCLUSION: Remote hospital care for recovering COVID-19 patients is feasible. However, we could not demonstrate an increase in hospital-free days in the 30 days following randomisation. Optimising the intervention, timing, and identification of patients who will benefit most from remote hospital care could improve the impact of this intervention.

8.
JMIR Perioper Med ; 3(2): e21705, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33393923

ABSTRACT

BACKGROUND: Hospital stays after major surgery are shorter than ever before. Although enhanced recovery and early discharge have many benefits, some complications will now first manifest themselves in home settings. Remote patient monitoring with wearable sensors in the first days after hospital discharge may capture clinical deterioration earlier but is largely uncharted territory. OBJECTIVE: This study aimed to assess the technical feasibility of patients, discharged after esophagectomy, being remotely monitored at home with a wireless patch sensor and the experiences of these patients. In addition, we determined whether observing vital signs with a wireless patch sensor influences clinical decision making. METHODS: In an observational feasibility study, vital signs of patients were monitored with a wearable patch sensor (VitalPatch, VitalConnect Inc) during the first 7 days at home after esophagectomy and discharge from hospital. Vital signs trends were shared with the surgical team once a day, and they were asked to check the patient's condition by phone each morning. Patient experiences were evaluated with a questionnaire, and technical feasibility was analyzed on a daily basis as the percentage of data loss and gap durations. In addition, the number of patients for whom a change in clinical decision was made based on the results of remote vital signs monitoring at home was assessed. RESULTS: Patients (N=20) completed 7 days each of home monitoring with the wearable patch sensor. Each of the patients had good recovery at home, and remotely observed vital signs trends did not alter clinical decision making. Patients appreciated that surgeons checked their vital signs daily (mean 4.4/5) and were happy to be called by the surgical team each day (mean 4.5/5). Wearability of the patch was high (mean 4.4/5), and no reports of skin irritation were mentioned. Overall data loss of vital signs measurements at home was 25%; both data loss and gap duration varied considerably among patients. CONCLUSIONS: Remote monitoring of vital signs combined with telephone support from the surgical team was feasible and well perceived by all patients. Future studies need to evaluate the impact of home monitoring on patient outcome as well as the cost-effectiveness of this new approach.

9.
Anesthesiology ; 132(3): 424-439, 2020 03.
Article in English | MEDLINE | ID: mdl-31743149

ABSTRACT

BACKGROUND: Vital signs are usually recorded once every 8 h in patients at the hospital ward. Early signs of deterioration may therefore be missed. Wireless sensors have been developed that may capture patient deterioration earlier. The objective of this study was to determine whether two wearable patch sensors (SensiumVitals [Sensium Healthcare Ltd., United Kingdom] and HealthPatch [VitalConnect, USA]), a bed-based system (EarlySense [EarlySense Ltd., Israel]), and a patient-worn monitor (Masimo Radius-7 [Masimo Corporation, USA]) can reliably measure heart rate (HR) and respiratory rate (RR) continuously in patients recovering from major surgery. METHODS: In an observational method comparison study, HR and RR of high-risk surgical patients admitted to a step-down unit were simultaneously recorded with the devices under test and compared with an intensive care unit-grade monitoring system (XPREZZON [Spacelabs Healthcare, USA]) until transition to the ward. Outcome measures were 95% limits of agreement and bias. Clarke Error Grid analysis was performed to assess the ability to assist with correct treatment decisions. In addition, data loss and duration of data gaps were analyzed. RESULTS: Twenty-five high-risk surgical patients were included. More than 700 h of data were available for analysis. For HR, bias and limits of agreement were 1.0 (-6.3, 8.4), 1.3 (-0.5, 3.3), -1.4 (-5.1, 2.3), and -0.4 (-4.0, 3.1) for SensiumVitals, HealthPatch, EarlySense, and Masimo, respectively. For RR, these values were -0.8 (-7.4, 5.6), 0.4 (-3.9, 4.7), and 0.2 (-4.7, 4.4) respectively. HealthPatch overestimated RR, with a bias of 4.4 (limits: -4.4 to 13.3) breaths/minute. Data loss from wireless transmission varied from 13% (83 of 633 h) to 34% (122 of 360 h) for RR and 6% (47 of 727 h) to 27% (182 of 664 h) for HR. CONCLUSIONS: All sensors were highly accurate for HR. For RR, the EarlySense, SensiumVitals sensor, and Masimo Radius-7 were reasonably accurate for RR. The accuracy for RR of the HealthPatch sensor was outside acceptable limits. Trend monitoring with wearable sensors could be valuable to timely detect patient deterioration.


Subject(s)
Monitoring, Intraoperative/instrumentation , Vital Signs , Wearable Electronic Devices , Aged , Critical Care , Female , Heart Rate , Humans , Male , Middle Aged , Monitoring, Intraoperative/methods , Monitoring, Physiologic , Oximetry/instrumentation , Oximetry/methods , Reproducibility of Results , Respiratory Rate , Treatment Outcome , Wireless Technology
10.
Injury ; 51 Suppl 2: S97-S105, 2020 May.
Article in English | MEDLINE | ID: mdl-31761422

ABSTRACT

BACKGROUND: Adverse events are common in high-risk surgical patients, but early detection is difficult. Recent innovations have resulted in wireless and 'wearable' sensors, which may capture patient deterioration at an early stage, but little is known regarding their ability to timely detect events. The objective of this study is to describe the ability of currently available wireless sensors to detect adverse events in high-risk patients. METHODS: A descriptive analysis was performed of all vital signs trend data obtained during an observational comparison study of wearable sensors for vital signs monitoring in high-risk surgical patients during the initial days of recovery at a surgical step-down unit (SDU) and subsequent traumatology or surgical oncology ward. Heart rate (HR), respiratory rate (RR) and oxygen saturation (SpO2) were continuously recorded. Vital sign trend patterns of patients that developed adverse events were described and compared to vital sign recordings of patients without occurrence of adverse events. Two wearable patch sensors were used (SensiumVitals and HealthPatch), a bed-based mattress sensor (EarlySense) and a patient-worn monitor (Masimo Radius-7). RESULTS: Twenty adverse events occurred in 11 of the 31 patients included. Atrial fibrillation (AF) was most common (20%). The onset of AF was recognizable as a sudden increase in HR in all recordings, and all patients with new-onset AF after esophagectomy developed other postoperative complications. Patients who developed respiratory insufficiency showed an increase in RR and a decrease in SpO2, but an increase in HR was not always visible. In patients without adverse events, temporary periods of high HR and RR are observed as well, but these were transient and less frequent. CONCLUSIONS: Current systems for remote wireless patient monitoring on the ward are capable of detecting abnormalities in vital sign patterns in patients who develop adverse events. Remote patient monitoring may have potential to improve patient safety by generating early warnings for deterioration to nursing staff.


Subject(s)
Monitoring, Physiologic/instrumentation , Surgical Procedures, Operative/adverse effects , Vital Signs , Wearable Electronic Devices , Wireless Technology , Adult , Aged , Aged, 80 and over , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/etiology , Female , Heart Rate , Humans , Male , Middle Aged , Patient Safety , Postoperative Complications/diagnosis , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/etiology , Respiratory Rate
11.
BMJ Open ; 8(2): e020162, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29487076

ABSTRACT

BACKGROUND AND OBJECTIVES: Intermittent vital signs measurements are the current standard on hospital wards, typically recorded once every 8 hours. Early signs of deterioration may therefore be missed. Recent innovations have resulted in 'wearable' sensors, which may capture patient deterioration at an earlier stage. The objective of this study was to determine whether a wireless 'patch' sensor is able to reliably measure respiratory and heart rate continuously in high-risk surgical patients. The secondary objective was to explore the potential of the wireless sensor to serve as a safety monitor. DESIGN: In an observational methods comparisons study, patients were measured with both the wireless sensor and bedside routine standard for at least 24 hours. SETTING: University teaching hospital, single centre. PARTICIPANTS: Twenty-five postoperative surgical patients admitted to a step-down unit. OUTCOME MEASURES: Primary outcome measures were limits of agreement and bias of heart rate and respiratory rate. Secondary outcome measures were sensor reliability, defined as time until first occurrence of data loss. RESULTS: 1568 hours of vital signs data were analysed. Bias and 95% limits of agreement for heart rate were -1.1 (-8.8 to 6.5) beats per minute. For respiration rate, bias was -2.3 breaths per minute with wide limits of agreement (-15.8 to 11.2 breaths per minute). Median filtering over a 15 min period improved limits of agreement of both respiration and heart rate. 63% of the measurements were performed without data loss greater than 2 min. Overall data loss was limited (6% of time). CONCLUSIONS: The wireless sensor is capable of accurately measuring heart rate, but accuracy for respiratory rate was outside acceptable limits. Remote monitoring has the potential to contribute to early recognition of physiological decline in high-risk patients. Future studies should focus on the ability to detect patient deterioration on low care environments and at home after discharge.


Subject(s)
Monitoring, Physiologic/instrumentation , Wearable Electronic Devices , Wireless Technology/standards , Adult , Aged , Female , Heart Rate , Hospital Units , Hospitalization , Hospitals, Teaching , Humans , Male , Middle Aged , Netherlands , Point-of-Care Systems , Reproducibility of Results , Respiratory Rate , Vital Signs , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...