Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 62(44): 18172-18178, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37871183

ABSTRACT

A series of transition-metal-containing rare earth thiosilicates, RE3TM0.5SiS7 (RE = Gd-Yb; TM = Fe, Co, Ni), was obtained via flux crystal growth utilizing the boron chalcogen mixture (BCM) method. The series includes the first reported ytterbium-containing thiosilicates crystallizing in this structure type. The thiosilicates crystallize in the hexagonal crystal system in space group P63. The use of the BCM method to synthesize phase-pure samples of the title compounds for magnetic measurements is discussed, highlighting how the approach avoids some of the difficulties that plague typical chalcogenide syntheses. Magnetic measurements demonstrate that some of the compounds order antiferromagnetically and exhibit transition temperatures below 15 K.

2.
Inorg Chem ; 62(42): 17409-17416, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37812138

ABSTRACT

The uranium-containing 2H-perovskite-related chalcogenide family of compounds was revisited using the recently developed boron-chalcogen mixture (BCM) method for actinides to aid in their syntheses and to obtain magnetic measurements. Two known 2H-perovskite-related structures, Ba3MnUS6 and Ba3FeUS6, were synthesized using the BCM method and were found to exhibit antiferromagnetic transitions at TN = ∼7.6 and 10.8 K, respectively. Combining the BCM method with the molten flux crystal growth technique resulted in single crystals of three new compositions, Ba3NiUS6, Ba3CoUS6, and Ba3Co0.858(5)Mg0.142(5)US6, the synthesis and characterization of which is reported. Magnetic measurements of Ba3NiUS6 revealed a complex magnetic susceptibility consisting of a weak, glassy, antiferromagnetic transition near 65 K followed by an antiferromagnetic transition at TN = ∼18 K. A reduced radius ratio plot for the existing chalcogenide compositions and new additions to this structure type reported herein is presented to aid in the search for additional 2H-perovskite-related sulfides.

3.
Dalton Trans ; 52(24): 8425-8433, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37272186

ABSTRACT

Single crystals of A3MF6 (A = Rb, Cs; M = Al, Ga) were grown from mixed alkali chloride/fluoride fluxes in sealed silver tubes. For Cs3AlF6 and Cs3GaF6, two polymorphs were observed at room temperature: m-Cs3MF6 and o-Cs3MF6. For the two Rb containing compositions, only one room temperature polymorph was observed: o-Rb3AlF6 and t-Rb3GaF6, respectively. Simultaneous TGA/DSC and high temperature SCXRD/PXRD were used to study the high temperature behavior of A3MF6. The compounds of all four compositions were found to undergo structure transitions upon heating to the same cubic structure type, c-A3MF6.

4.
Inorg Chem ; 62(19): 7446-7452, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37137155

ABSTRACT

Nine new rare earth magnesium-containing thiosilicates of the formula RE3Mg0.5SiS7 (Ln = Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er) were synthesized in an alkali halide flux using the boron chalcogen mixture (BCM) method. Crystals of high quality were produced, and their structures were determined by single-crystal X-ray diffraction. The compounds crystallize in the hexagonal crystal system in the P63 space group. Phase pure powders of the compounds were used for magnetic susceptibility measurements and for second-harmonic generation (SHG) measurements. Magnetic measurements indicate that Ce3Mg0.5SiS7, Sm3Mg0.5SiS7, and Dy3Mg0.5SiS7 exhibit paramagnetic behavior with a negative Weiss temperature over the 2-300 K temperature range. SHG measurements of La3Mg0.5SiS7 demonstrated SHG activity with an efficiency of 0.16 times the standard potassium dihydrogen phosphate (KDP).

5.
Inorg Chem ; 61(27): 10502-10508, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35766156

ABSTRACT

A series of A2M4U6S17 (A = alkali metal; M = Pd, Pt) compounds, specifically K2Pd4U6S17, K2Pt4U6S17, Rb2Pt4U6S17, and Cs2Pt4U6S17, were synthesized using the combined boron-chalcogen mixture and molten flux crystal growth methods. The formation of rubidium- and cesium-containing analogues resulted from a in situ alkali polysulfide flux formed from alkali carbonates. The successful synthesis of single crystals of the title compounds allowed for their structural characterization by single-crystal X-ray diffraction. The structure determination revealed disorder of the alkali cations in Rb2Pt4U6S17 and Cs2Pt4U6S17, while the potassium cations in K2Pd4U6S17 and K2Pt4U6S17 were fully ordered. Magnetic measurements were performed on samples of K2Pt4U6S17, Rb2Pt4U6S17, and Cs2Pt4U6S17 that contained small amounts of paramagnetic ß-US2 and diamagnetic PtS. Antiferromagnetic order was observed at TN = 9.1 K for K2Pt4U6S17. No long-range magnetic order was observed for Rb2Pt4U6S17 and Cs2Pt4U6S17. Uranium moments of 2.5, 2.6, and 2.6 µB were measured for K2Pt4U6S17, Rb2Pt4U6S17, and Cs2Pt4U6S17, respectively.

6.
Chem Commun (Camb) ; 58(57): 7992-7995, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35762413

ABSTRACT

The Boron-Chalcogen Mixture method was used to obtain single crystals of the previously extremely difficult to synthesize lanthanide orthothioborates to investigate their structures and their structurally connected optical behavior, such as second harmonic generation. Using a combined halide and polychalcogenide flux, the BCM method yielded single crystals of LnBS3 (Ln = La, Ce, Pr, Nd), which are isostructural and crystallize in the non-centrosymmetric space group, Pna21. Second harmonic generation measurements confirmed the expectation that LaBS3 would exhibit a strong SHG response, measured at 1.5 × KDP.

7.
Inorg Chem ; 60(20): 15371-15382, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34617442

ABSTRACT

A series of new ternary lanthanide-based chlorides, Cs2EuCl5(H2O)10, Cs7LnCl10(H2O)8 (Ln = Gd or Ho), Cs10Tb2Cl17(H2O)14(H3O), Cs2DyCl5(H2O)6, Cs8Er3Cl17(H2O)25, and Cs5Ln2Cl11(H2O)17 (Ln = Y, Lu, or Yb), were prepared as single crystals via a facile solution route. The compounds with compositions of Cs7LnCl10(H2O)8 (Ln = Gd or Ho) and Cs5Ln2Cl11(H2O)17 (Ln = Y, Lu, or Yb) crystallize in a monoclinic crystal system in space groups C2 and P21/c, respectively, whereas Cs2EuCl5(H2O)10, Cs10Tb2Cl17(H2O)14(H3O), and Cs8Er3Cl17(H2O)25 crystallize in orthorhombic space groups Pbcm, Pnma, and P212121, respectively. Cs2DyCl5(H2O)6 crystallizes with triclinic symmetry in space group P1̅. All of these compounds exhibit complex three-dimensional structures built of isolated lanthanide polyhedral units that are linked together by extensive hydrogen bonds. Cs2EuCl5(H2O)10 and Cs10Tb2Cl17(H2O)14(H3O) luminesce upon irradiation with 375 nm ultraviolet light, emitting intense orange-red and green color, respectively, and Cs10Tb2Cl17(H2O)14(H3O) scintillates when exposed to X-rays. Radioluminescence (RL) measurement of Cs10Tb2Cl17(H2O)14(H3O) in powder form shows that the RL emission integrated in the range of 300-750 nm was ∼16% of BGO powder.

8.
Dalton Trans ; 50(5): 1683-1689, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33443264

ABSTRACT

A series of rubidium rare earth thiophosphates with the formula Rb4Ln2(P2S6)(PS4)2 (Ln = La, Ce, Pr, Nd, Sm, and Gd) were synthesized using the high temperature molten flux crystal growth method utilizing a RbBr flux. Single crystals of all title compounds, as well as phase pure powders of the La-, Ce-, and Sm-containing compositions, were obtained. Single crystals of the title compounds were characterized by single crystal and powder X-ray diffraction for structure and phase identification. Rb4Ln2(P2S6)(PS4)2 crystallizes in the monoclinic crystal system adopting the P21/n space group for the large rare earths (Ln = La, Ce, Pr) and the C2/c space group for the smaller rare earths (Ln = Nd, Sm, Gd). This Rb4Ln2(P2S6)(PS4)2 series is a rare example of thiophosphates containing both tetrahedral [PVS4]3- and dimeric [PIV2S6]4- thiophosphate units that, in this structural family, link corrugated rare earth sulfide chains into sheets. The band gaps of the materials were determined from UV-Vis data and the fluorescence spectrum of Rb4Ce2(P2S6)(PS4)2 was collected. Optical band gaps were estimated to be 2.9 and 2.4 for the Nd and Sm analogues, respectively.

9.
J Am Chem Soc ; 142(33): 14365-14373, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32787253

ABSTRACT

Actinide chalcogenides are of interest for fundamental studies of the behavior of 5f electrons in actinides located in a soft ligand coordination environment. As actinides exhibit an extremely high affinity for oxygen, the synthesis of phase-pure actinide chalcogenide materials free of oxide impurities is a great challenge and, moreover, requires the availability and use of oxygen-free starting materials. Herein, we report a new method, the boron-chalcogen mixture (BCM) method, for the synthesis of phase-pure uranium chalcogenides based on the use of a boron-chalcogen mixture, where boron functions as an "oxygen sponge" to remove oxygen from an oxide precursor and where the elemental chalcogen effects transformation of the oxide precursor into an oxygen-free chalcogenide reagent. The boron oxide can be separated from the reaction mixture that is left to react to form the desired chalcogenide product. Several syntheses are presented that demonstrate the broad functionality of the technique, and thermodynamic calculations that show the underlying driving force are discussed. Specifically, three classes of chalcogenides that include both new (rare earth uranium sulfides and alkali-thorium thiophosphates) and previously reported compounds were prepared to validate the approach: binary uranium and thorium sulfides, oxide to sulfide transformation in solid-state reactions, and in situ generation of actinide chalcogenides in flux crystal growth reactions.

12.
Inorg Chem ; 59(3): 1905-1916, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-31965796

ABSTRACT

The effect of lanthanide contraction often results in topological and symmetry changes in compounds with the same compositions as a function of lanthanide cation size. Here we report on the first example of a lanthanide thiophosphate exhibiting a change in the lanthanide cation environment without any topological or symmetry change. A series of new lanthanide thiophosphates with mixed alkali cations were obtained via a flux crystal growth technique using a CsI flux. The obtained compounds Cs2NaLn(PS4)2 (Ln = La-Nd, Sm, and Gd-Ho) were grown as large single crystals (∼0.1-1 mm3) and characterized using single-crystal X-ray diffraction and magnetic susceptibility measurements. As we moved across the series, the structural studies revealed a change in the lanthanide coordination environment depending on the identity of the lanthanide. Although all compounds in the Cs2NaLn(PS4)2 series crystallize in the same space group and have the same Wyckoff atom positions, a slight change in size between Sm3+ and Gd3+ causes a subtle change in coordination number from 9 (for Ln = La-Sm) to 8 (for Ln = Gd-Ho), resulting in two distinct but virtually identical structure types. Ab initio calculations were performed, and the observed experimental trend was corroborated computationally. Magnetic measurements performed on the Cs2NaLn(PS4)2 (Ln = Ce, Pr, Nd, Gd, and Tb) compounds revealed paramagnetic behavior.

13.
Inorg Chem ; 58(9): 6565-6573, 2019 May 06.
Article in English | MEDLINE | ID: mdl-31013068

ABSTRACT

To determine the influence of the lanthanide size on the structures and properties of thiophosphates, a thiophosphate series containing different lanthanides was synthesized via high temperature flux crystal growth and their structures and physical properties analyzed and compared. Layered thiohypophosphates NaLnP2S6 (Ln = La, Ce, Pr) and thiopyrophosphates CsLnP2S7 (Ln = Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Yb, Y) were grown out of an iodide flux using consistent reaction conditions across both series. Under the mildly reducing iodide flux reaction conditions, a rather rare example of phosphorus reduction from the +5 to the +4 oxidation state was observed. Both resultant structure types are based on lanthanide thiophosphate sheets with the alkali cations located between them. Magnetic susceptibility measurements were conducted and revealed Curie-Weiss behavior of the samples, with a Van Vleck contribution in the CsSmP2S7 sample. UV-vis data was found to be in good agreement with the literature, indicating little influence of the sulfide environment on the localized 4f orbitals.

SELECTION OF CITATIONS
SEARCH DETAIL
...