Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
IEEE Trans Ultrason Ferroelectr Freq Control ; 67(10): 1967-1979, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32746158

ABSTRACT

This technical review presents the state of the art in low-temperature chemical solution deposition (CSD) processing of ferroelectric oxide thin films. To achieve the integration of multifunctional crystalline oxides with flexible and semiconductor devices is, today, crucial to meet the demands of coming electronic devices. Hence, amorphous metal-oxide-semiconductors have been recently introduced in thin-film electronics. However, their benefits are limited compared with those of ferroelectric oxides, in which intrinsic multifunctionality would make possible multiple operations in the device. However, ferroelectricity is linked to a noncentrosymmetric crystal structure that is achieved, in general, at high temperatures, over 500 °C. These temperatures exceed the thermal stability of flexible polymer substrates and are not compatible with those permitted in the current fabrication routines of Si-based devices. In addition, the manufacturing of flexible electronic devices not only calls for low-temperature fabrication processes but also for deposition techniques that scale easily to the large areas required in flexible devices. In this regard, CSD processes are the best positioned today to integrate metal oxide thin films with flexible substrates as a large-area, low-cost, high-throughput fabrication technique. Here, we review the progress made in the last years in fabricating at low-temperature crystalline ferroelectric oxide thin films via CSD methods, highlighting the recent work of our group in the preparation of ferroelectric oxide thin films on flexible polyimide substrates.

2.
Chemistry ; 26(42): 9157-9179, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32212279

ABSTRACT

As an introduction to this themed issue, a critically selected overview of recent progress on the topic of solution methods for the low-temperature crystallization of nanoscale oxide materials is presented. It is focused on the low-temperature solution processing of oxide nanostructures and thin films. Benefits derived from these methods span from minimizing the environmental impact to reducing the fabrication costs. In addition, this topic is regarded as a key objective in the area because it offers a unique opportunity for the use of these materials in areas like flexible electronics, energy conversion and storage, environmental sciences, catalysis, or biomedicine.

3.
Chemistry ; 26(42): 9277-9291, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32155291

ABSTRACT

Photochemistry has emerged in the last few years as a powerful tool for the low-temperature processing of metal oxide thin films prepared by solution methods. Today, its implementation into the fabrication procedure makes possible the integration of amorphous semiconductors or functional crystalline oxides into flexible electronic systems at temperatures below 350 °C. In this review, the effects of UV irradiation at the different stages of the chemical solution deposition of metal oxide thin films are presented. These stages include from the synthesis of the precursor solution to the formation of the amorphous metal-oxygen network in the film and its subsequent crystallization into the oxide phase. Photochemical reactions that can be induced in both the solution deposited layer and the irradiation atmosphere are first described, highlighting the role of the potential reactive chemical species formed in the system under irradiation, such as free radicals or oxidizing compounds. Then, the photochemical effects of continuous UV light on the film are shown, focusing on the decomposition of the metal precursors, the condensation and densification of the metal-oxygen network, and the nucleation and growth of the crystalline oxide. All these processes are demonstrated to advance the formation and crystallization of the metal oxide thin film to an earlier stage, which is ultimately translated into a lower temperature range of fabrication. The reduced energy consumption of the process upon decreasing the processing temperature, and the prospect of using light instead of heat in the synthesis of inorganic materials, make photochemistry as a promising technique for a sustainable future ever more needed in our life.

4.
Chem Soc Rev ; 47(2): 291-308, 2018 Jan 22.
Article in English | MEDLINE | ID: mdl-29165444

ABSTRACT

Over the last few years the efforts devoted to the research on low-temperature processing of metal oxide thin films have increased notably. This has enabled the direct integration of metal oxide layers (amorphous semiconductors) on low-melting-point polymeric substrates for flexible electronic systems, which adds to the economic and environmental benefits of the use of these processes with reduced energy consumption. More challenging is the preparation of crystalline complex oxide films at temperatures compatible with their direct integration in flexible devices. However, the usually high crystallization temperatures (>600 °C) impede the development of devices that take full advantage of the large variety of oxide functionalities available. This tutorial review analyzes a number of strategies based on wet chemical methods for inducing the crystallization of metal oxide thin films at low temperatures. The key mechanisms are explained in relation to the specific step of the fabrication process reached in an earlier stage: the formation of a defect-free, highly densified amorphous metal-oxygen network or the actual crystallization of the metal oxide. The role of photochemistry, where light can be used as a complementary energy source to induce crystallization, is particularly highlighted. This requires the synthesis of novel photosensitive solutions (modified metal alkoxides, charge-transfer metal complexes or structurally designed molecular compounds) and a precise control over the reactions promoted by UV irradiation (photochemical cleavage, ozonolysis, condensation or photocatalysis). Relevant examples derived from the integration of crystalline metal oxide thin films on flexible substrates (≤350 °C) illustrate the most recent achievements in this field.

5.
Sci Rep ; 6: 39561, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27996042

ABSTRACT

The potential of UV-light for the photochemical synthesis and stabilization of non-equilibrium crystalline phases in thin films is demonstrated for the ß-Bi2O3 polymorph. The pure ß-Bi2O3 phase is thermodynamically stable at high temperature (450-667 °C), which limits its applications in devices. Here, a tailored UV-absorbing bismuth(III)-N-methyldiethanolamine complex is selected as an ideal precursor for this phase, in order to induce under UV-light the formation of a -Bi-O-Bi- continuous network in the deposited layers and the further conversion into the ß-Bi2O3 polymorph at a temperature as low as 250 °C. The stabilization of the ß-Bi2O3 films is confirmed by their conductivity behavior and a thorough characterization of their crystal structure. This is also supported by their remarkable photocatalytic activity. Besides, this processing method has allowed us for the first time the preparation of ß-Bi2O3 films on flexible plastic substrates, which opens new opportunities for using these materials in potential applications not available until now (e.g., flexible photocatalytic reactors, self-cleaning surfaces or wearable antimicrobial fabrics). Therefore, photochemical solution deposition (PCSD) demonstrates to be not only an efficient approach for the low temperature processing of oxide films, but also an excellent alternative for the stabilization of metastable phases.


Subject(s)
Bismuth/chemistry , Photochemistry/methods , Titanium/chemistry , Catalysis , Crystallography, X-Ray , Glass , Materials Testing , Metals/chemistry , Oxides/chemistry , Photochemical Processes , Plastics , Silicon/chemistry , Stress, Mechanical , Temperature , Thermodynamics , Ultraviolet Rays , X-Ray Diffraction
7.
Sci Rep ; 6: 20143, 2016 Feb 03.
Article in English | MEDLINE | ID: mdl-26837240

ABSTRACT

Applications of ferroelectric materials in modern microelectronics will be greatly encouraged if the thermal incompatibility between inorganic ferroelectrics and semiconductor devices is overcome. Here, solution-processable layers of the most commercial ferroelectric compound--morphotrophic phase boundary lead zirconate titanate, namely Pb(Zr0.52Ti0.48)O3 (PZT)--are grown on silicon substrates at temperatures well below the standard CMOS process of semiconductor technology. The method, potentially transferable to a broader range of Zr:Ti ratios, is based on the addition of crystalline nanoseeds to photosensitive solutions of PZT resulting in perovskite crystallization from only 350 °C after the enhanced decomposition of metal precursors in the films by UV irradiation. A remanent polarization of 10.0 µC cm(-2) is obtained for these films that is in the order of the switching charge densities demanded for FeRAM devices. Also, a dielectric constant of ~90 is measured at zero voltage which exceeds that of current single-oxide candidates for capacitance applications. The multifunctionality of the films is additionally demonstrated by their pyroelectric and piezoelectric performance. The potential integration of PZT layers at such low fabrication temperatures may redefine the concept design of classical microelectronic devices, besides allowing inorganic ferroelectrics to enter the scene of the emerging large-area, flexible electronics.

8.
Adv Mater ; 27(16): 2608-13, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25776728

ABSTRACT

The photocatalytically assisted decomposition of liquid precursors of metal oxides incorporating TiO2 particles enables the preparation of functional layers from the ferroelectric Pb(Zr,Ti)O3 and multiferroic BiFeO3 perovskite systems at temperatures not exceeding 350 ºC. This enables direct deposition on flexible plastic, where the multifunctionality provided by these complex-oxide materials guarantees their potential use in next-generation flexible electronics.

9.
Adv Mater ; 26(9): 1405-9, 2014 Mar 05.
Article in English | MEDLINE | ID: mdl-24339131

ABSTRACT

Functional ferroelectric oxides for flexible electronics are achieved from activated solutions enabling low-temperature processing and large-area deposition directly on polymeric substrates. This processing technology reaches the lower limit temperature of crystallization at 300 °C, using a strategy that combines seeded diphasic precursors and photochemical solution deposition. Properties of these materials are comparable to those of high-temperature-processed counterparts and organic ferroelectrics.

10.
J Am Chem Soc ; 133(33): 12922-5, 2011 Aug 24.
Article in English | MEDLINE | ID: mdl-21806022

ABSTRACT

Functional oxide films were obtained at low temperature by combination of aqueous precursors and a UV-assisted annealing process (aqueous photochemical solution deposition). For a PbTiO(3) model system, functional ferroelectric perovskite films were prepared at only 400 °C, a temperature compatible with the current Si-technology demands. Intrinsically photosensitive and environmentally friendly aqueous precursors can be prepared for most of the functional multimetal oxides, as additionally demonstrated here for multiferroic BiFeO(3), yielding virtually unlimited possibilities for this low-temperature fabrication technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...