Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(50): 55850-55863, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36508553

ABSTRACT

Printed paper-based electronics offers solutions to rising energy concerns by supplying flexible, environmentally friendly, low-cost infrastructure for portable and wearable electronics. Herein, we demonstrate a scalable spray-coating approach to fabricate tailored paper poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/cellulose nanofibril (CNF) electrodes for all-printed supercapacitors. Layer-by-layer spray deposition was used to achieve high-quality electrodes with optimized electrode thickness. The morphology of these electrodes was analyzed using advanced X-ray scattering methods, revealing that spray-coated electrodes have smaller agglomerations, resulting in a homogeneous film, ultimately suggesting a better electrode manufacturing method than drop-casting. The printed paper-based supercapacitors exhibit an areal capacitance of 9.1 mF/cm2, which provides enough energy to power electrochromic indicators. The measured equivalent series resistance (ESR) is as low as 0.3 Ω, due to improved contact and homogeneous electrodes. In addition, a demonstrator in the form of a self-powered wearable wristband is shown, where a large-area (90 cm2) supercapacitor is integrated with a flexible solar cell and charged by ambient indoor light. This demonstration shows the tremendous potential for sequential coating/printing methods in the scaling up of printed wearables and self-sustaining systems.

2.
ACS Appl Mater Interfaces ; 13(47): 56663-56673, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34788001

ABSTRACT

Large-scale fabrication of metal cluster layers for usage in sensor applications and photovoltaics is a huge challenge. Physical vapor deposition offers large-scale fabrication of metal cluster layers on templates and polymer surfaces. In the case of aluminum (Al), only little is known about the formation and interaction of Al clusters during sputter deposition. Complex polymer surface morphologies can tailor the deposited Al cluster layer. Here, a poly(methyl methacrylate)-block-poly(3-hexylthiophen-2,5-diyl) (PMMA-b-P3HT) diblock copolymer template is used to investigate the nanostructure formation of Al cluster layers on the different polymer domains and to compare it with the respective homopolymers PMMA and P3HT. The optical properties relevant for sensor applications are monitored with ultraviolet-visible (UV-vis) measurements during the sputter deposition. The formation of Al clusters is followed in situ with grazing-incidence small-angle X-ray scattering (GISAXS), and the chemical interaction is revealed by X-ray photoelectron spectroscopy (XPS). Furthermore, atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) yield topographical information about selective wetting of Al on the P3HT domains and embedding in the PMMA domains in the early stages, followed by four distinct growth stages describing the Al nanostructure formation.

3.
ACS Appl Mater Interfaces ; 13(23): 27696-27704, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34096698

ABSTRACT

Optically responsive materials are present in everyday life, from screens to sensors. However, fabricating large-area, fossil-free materials for functional biocompatible applications is still a challenge today. Nanocelluloses from various sources, such as wood, can provide biocompatibility and are emerging candidates for templating organic optoelectronics. Silver (Ag) in its nanoscale form shows excellent optical properties. Herein, we combine both materials using thin-film large-area spray-coating to study the fabrication of optical response applications. We characterize the Ag nanoparticle formation by X-ray scattering and UV-vis spectroscopy in situ during growth on the nanocellulose template. The morphology and optical properties of the nanocellulose film are compared to the rigid reference surface SiO2. Our results clearly show the potential to tailor the energy band gap of the resulting hybrid material.

4.
ACS Appl Mater Interfaces ; 13(1): 1592-1602, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33355441

ABSTRACT

Spray deposition is a scalable and cost-effective technique for the fabrication of magnetic hybrid films containing diblock copolymers (DBCs) and magnetic nanoparticles. However, it is challenging to obtain spray-deposited anisotropic magnetic hybrid films without using external magnetic fields. In the present work, spray deposition is applied to prepare perpendicular anisotropic magnetic hybrid films by controlling the orientation of strontium hexaferrite nanoplatelets inside ultra-high-molecular-weight DBC polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) films. During spray deposition, the evolution of DBC morphology and the orientation of magnetic nanoplatelets are monitored with in situ grazing-incidence small-angle X-ray scattering (GISAXS). For reference, a pure DBC film without nanoplatelets is deposited with the same conditions. Solvent-controlled magnetic properties of the hybrid film are proven with solvent vapor annealing (SVA) applied to the final deposited magnetic films. Obvious changes in the DBC morphology and nanoplatelet localization are observed during SVA. The superconducting quantum interference device data show that ferromagnetic hybrid polymer films with high coercivity can be achieved via spray deposition. The hybrid films show a perpendicular magnetic anisotropy before SVA, which is strongly weakened after SVA. The spray-deposited hybrid films appear highly promising for potential applications in magnetic data storage and sensors.

5.
J Am Chem Soc ; 142(41): 17681-17692, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32924464

ABSTRACT

Conjugated polymers are regarded as promising candidates for dopant-free hole-transport materials (HTMs) in efficient and stable perovskite solar cells (PSCs). Thus far, the vast majority of polymeric HTMs feature structurally complicated benzo[1,2-b:4,5-b']dithiophene (BDT) analogs and electron-withdrawing heterocycles, forming a strong donor-acceptor (D-A) structure. Herein, a new class of phenanthrocarbazole (PC)-based polymeric HTMs (PC1, PC2, and PC3) has been synthesized by inserting a PC unit into a polymeric thiophene or selenophene chain with the aim of enhancing the π-π stacking of adjacent polymer chains and also to efficiently interact with the perovskite surface through the broad and planar conjugated backbone of the PC. Suitable energy levels, excellent thermostability, and humidity resistivity together with remarkable photoelectric properties are obtained via meticulously tuning the conformation and elemental composition of the polymers. As a result, PSCs containing PC3 as dopant-free HTM show a stabilized power conversion efficiency (PCE) of 20.8% and significantly enhanced longevity, rendering one of the best types of PSCs based on dopant-free HTMs. Subsequent experimental and theoretical studies reveal that the planar conformation of the polymers contributes to an ordered and face-on stacking of the polymer chains. Furthermore, introduction of the "Lewis soft" selenium atom can passivate surface trap sites of perovskite films by Pb-Se interaction and facilitate the interfacial charge separation significantly. This work reveals the guiding principles for rational design of dopant-free polymeric HTMs and also inspires rational exploration of small molecular HTMs.

6.
J Am Chem Soc ; 141(50): 19700-19707, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31747277

ABSTRACT

Perovskite solar cells (PSCs) has skyrocketed in the past decade to an unprecedented level due to their outstanding photoelectric properties and facile processability. However, the utilization of expensive hole transport materials (HTMs) and the inevitable instability instigated by the deliquescent dopants represent major concerns hindering further commercialization. Here, a series of low-cost, conjugated polymers are designed and applied as dopant-free HTMs in PSCs, featuring tuned energy levels, good temperature and humidity resistivity, and excellent photoelectric properties. Further studies highlight the critical and multifaceted roles of the polymers with respect to facilitating charge separation, passivating the surface trap sites of perovskite materials, and guaranteeing long-term stability of the devices. A stabilized power conversion efficiency (PCE) of 20.3% and remarkably enhanced device longevity are achieved using the dopant-free polymer P3 with a low concentration of 5 mg/mL, qualifying the device as one of the best PSC systems constructed on the basis of dopant-free HTMs so far. In addition, the flexible PSCs based on P3 also exhibit a PCE of 16.2%. This work demonstrates a promising route toward commercially viable, stable, and efficient PSCs.

7.
ACS Appl Mater Interfaces ; 11(32): 29416-29426, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31313904

ABSTRACT

Tailoring the optical and electronic properties of nanostructured polymer-metal composites demonstrates great potential for efficient fabrication of modern organic optical and electronic devices such as flexible sensors, transistors, diodes, or photovoltaics. Self-assembled polymer-metal nanocomposites offer an excellent perspective for creating hierarchical nanostructures on macroscopic scales by simple bottom-up processes. We investigate the growth processes of nanogranular silver (Ag) layers on diblock copolymer thin film templates during sputter deposition. The Ag growth is strongly driven by self-assembly and selective wetting on the lamella structure of polystyrene-block-poly(methyl methacrylate). We correlate the emerging nanoscale morphologies with collective optical and electronic properties and quantify the difference in Ag growth on the corresponding homopolymer thin films. Thus, we are able to determine the influence of the respective polymer template and observe substrate effects on the Ag cluster percolation threshold, which affects the insulator-to-metal transition (IMT). Optical spectroscopy in the UV-vis regime reveals localized surface plasmon resonance for the metal-polymer composite. Their maximum absorption is observed around the IMT due to the subsequent long-range electron conduction in percolated nanogranular Ag layers. Using X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy, we identify the oxidation of Ag at the acrylate side chains as an essential influencing factor driving the selective wetting behavior in the early growth stages. The results of polymer-templated cluster growth are corroborated by atomic force microscopy and field emission scanning electron microscopy.

8.
Sci Rep ; 9(1): 6465, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31015552

ABSTRACT

We investigated the fabrication and functional behaviour of conductive silver-nanowire-polymer composites for prospective use in printing applications. Silver-nanowires with an aspect ratio of up to 1000 were synthesized using the polyol route and embedded in a UV-curable and printable polymer matrix. Sheet resistances in the composites down to 13 Ω/sq at an optical transmission of about 90% were accomplished. The silver-nanowire composite morphology and network structure was investigated by electron microscopy, atomic force microscopy, profilometry, ellipsometry as well as surface sensitive X-ray scattering. By implementing different printing applications, we demonstrate that our silver nanowires can be used in different polymer composites. On the one hand, we used a tough composite for a 2D-printed film as top contact on a solar cell. On the other hand, a flexible composite was applied for a 3D-printed flexible capacitor.

9.
ACS Appl Mater Interfaces ; 7(24): 13547-56, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-26030314

ABSTRACT

The reproducible low-cost fabrication of functional metal-polymer nanocomposites with tailored optoelectronic properties for advanced applications remains a major challenge in applied nanotechnology. To obtain full control over the nanostructural evolution at the metal-polymer interface and its impact on optoelectronic properties, we employed combined in situ time-resolved microfocus grazing incidence small angle X-ray scattering (µGISAXS) with in situ UV/vis specular reflectance spectroscopy (SRS) during sputter deposition of gold on thin polystyrene films. On the basis of the temporal evolution of the key scattering features in the real-time µGISAXS experiment, we directly observed four different growth regimes: nucleation, isolated island growth, growth of larger aggregates via partial coalescence, and continuous layer growth. Moreover, their individual thresholds were identified with subnanometer resolution and correlated to the changes in optical properties. During sputter deposition, a change in optical reflectivity of the pristine gray-blue PS film was observed ranging from dark blue color due to the presence of isolated nanoclusters at the interface to bright red color from larger Au aggregates. We used simplified geometrical assumptions to model the evolution of average real space parameters (distance, size, density, contact angle) in excellent agreement with the qualitative observation of key scattering features. A decrease of contact angles was observed during the island-to-percolation transition and confirmed by simulations. Furthermore, a surface diffusion coefficient according to the kinetic freezing model and interfacial energy of Au on PS at room temperature were calculated based on a real-time experiment. The morphological characterization is complemented by X-ray reflectivity, optical, and electron microscopy. Our study permits a better understanding of the growth kinetics of gold clusters and their self-organization into complex nanostructures on polymer substrates. It opens up the opportunity to improve nanofabrication and tailoring of metal-polymer nanostructures for optoelectronic applications, organic photovoltaics, and plasmonic-enhanced technologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...