Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 5(28): 17129-17140, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32715198

ABSTRACT

Polyelectrolytes are used in paper manufacturing to increase flocculation and water drainage and improve mechanical properties. In this study, we examine the interaction between charged cellulosic nanomaterials and polyelectrolyte complex coacervates of weak polyelectrolytes, polyacrylic acid salt, and polyallylamine hydrochloride. We observe that by changing the order of addition of the polyelectrolytes to cellulose nanofibers (CNFs), we can tune the interactions between the materials, which in turn changes the degree of association of the coacervates to the CNFs and the rate at which they aggregate. Importantly for the papermaking process, when adding the polyelectrolytes sequentially to the CNFs, we found faster aggregation to the fibers and lower water retention values compared to those when preformed coacervates or CNFs by themselves were used. Coarse-grain molecular dynamic simulations further support the fundamental mechanism of aggregation by taking into consideration the interaction between cellulose and the complexes at the molecular level. The simulations corroborate the experimental observations by showing the importance of strong electrostatic interactions in aggregate formation.

2.
ACS Macro Lett ; 8(10): 1323-1327, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-35651165

ABSTRACT

Polyelectrolyte brushes are important stimuli-responsive materials in a variety of technological applications as well as in biological systems. Their small size, however, introduces characterization challenges, particularly in studying 3D structure and time-dependent behavior. In this Letter, we report on the polyelectrolyte brush behavior of extra-large hyaluronan brushes (∼15 µm) recently developed using an enzyme-mediated growth process. In response to increasing ionic strength, the brush displays the osmotic brush regime and the salted brush regime. We also show a collapse of 96% when the brush is placed in a poor solvent. This collapse is rapid when changing from a good to poor solvent, but re-expansion is slow when changing back to a good solvent. The observed brush behavior described in this Letter is similar to that seen for smaller polyelectrolyte brushes, indicating that these larger brushes may serve as model systems to study more complex phenomena through confocal microscopy.

3.
Sci Adv ; 3(12): eaao1497, 2017 12.
Article in English | MEDLINE | ID: mdl-29226245

ABSTRACT

Subtle details about a polyelectrolyte's surrounding environment can dictate its structural features and potential applications. Atomic force microscopy (AFM), surface forces apparatus (SFA) measurements, and coarse-grained molecular dynamics simulations are combined to study the structure of planar polyelectrolyte brushes [poly(styrenesulfonate), PSS] in a variety of solvent conditions. More specifically, AFM images provide a first direct visualization of lateral inhomogeneities on the surface of polyelectrolyte brushes collapsed in solutions containing trivalent counterions. These images are interpreted in the context of a coarse-grained molecular model and are corroborated by accompanying interaction force measurements with the SFA. Our findings indicate that lateral inhomogeneities are absent from PSS brush layers collapsed in a poor solvent without multivalent ions. Together, AFM, SFA, and our molecular model present a detailed picture in which solvophobic and multivalent ion-induced effects work in concert to drive strong phase separation, with electrostatic bridging of polyelectrolyte chains playing an essential role in the collapsed structure formation.

4.
ACS Macro Lett ; 6(2): 155-160, 2017 Feb 21.
Article in English | MEDLINE | ID: mdl-35632885

ABSTRACT

Coarse-grained molecular dynamics enhanced by free-energy sampling methods is used to examine the roles of solvophobicity and multivalent salts on polyelectrolyte brush collapse. Specifically, we demonstrate that while ostensibly similar, solvophobic collapsed brushes and multivalent-ion collapsed brushes exhibit distinct mechanistic and structural features. Notably, multivalent-induced heterogeneous brush collapse is observed under good solvent polymer backbone conditions, demonstrating that the mechanism of multivalent collapse is not contingent upon a solvophobic backbone. Umbrella sampling of the potential of mean-force (PMF) between two individual brush strands confirms this analysis, revealing starkly different PMFs under solvophobic and multivalent conditions, suggesting the role of multivalent "bridging" as the discriminating feature in trivalent collapse. Structurally, multivalent ions show a propensity for nucleating order within collapsed brushes, whereas poor-solvent collapsed brushes are more disordered; this difference is traced to the existence of a metastable PMF minimum for poor solvent conditions, and a global PMF minimum for trivalent systems, under experimentally relevant conditions.

5.
Adv Colloid Interface Sci ; 239: 187-198, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27418294

ABSTRACT

Polyelectrolyte complexes (PECs) formed using polypeptides have great potential for developing new self-assembled materials, in particular for the development of drug and gene delivery vehicles. This review discusses the latest advancements in PECs formed using polypeptides as the polyanion and/or the polycation in both polyelectrolyte complexes that form bulk materials and block copolymer complexes that form nanoscale assemblies such as PEC micelles and other self-assembled structures. We highlight the importance of secondary structure formation between homogeneous polypeptide complexes, which, unlike PECs formed using other polymers, introduces additional intermolecular interactions in the form of hydrogen bonding, which may influence precipitation over coacervation. However, we still include heterogeneous complexes consisting of polypeptides and other polymers such as nucleic acids, sugars, and other synthetic polyelectrolytes. Special attention is given to complexes formed using nucleic acids as polyanions and polypeptides as polycations and their potential for delivery applications.

6.
Langmuir ; 29(10): 3292-300, 2013 Mar 12.
Article in English | MEDLINE | ID: mdl-23414233

ABSTRACT

We investigated the effect of spherical agglomeration of heterogeneous crystalline substrates on the nucleation of acetaminophen (AAP). Optical and electron microscopy showed that the surface morphologies of single crystal triclinic lactose and D-mannitol differed significantly from their counterparts formed via spherical agglomeration. Spherical agglomerates of lactose were shown to enhance the nucleation rate of acetaminophen (AAP) by a factor of 11 compared to single crystal lactose; however, no such enhancement was observed for D-mannitol. X-ray powder diffraction identified the presence of new crystal faces of lactose present only in the spherical agglomerates However, D-mannitol did not show any significant change in crystal morphology. The new crystal faces of triclinic lactose were analyzed using geometric lattice matching software and molecular dynamics simulations to establish any new and significant epitaxial matches between lactose and AAP. A coincident lattice match and a large favorable energy interaction from hydrogen bonding were observed between the (141¯) and (001) crystal faces of lactose and AAP, respectively. The enhanced nucleation kinetics, X-ray data, and computational studies indicated that the spherical crystallization of lactose exposed the (141¯) face on the surface of the agglomerates, which subsequently enhanced the nucleation rate of AAP through geometric lattice matching and molecular functionality. This study highlights the importance of exploring different heterogeneous substrate morphologies for enhancing nucleation kinetics.


Subject(s)
Acetaminophen/chemistry , Excipients/chemistry , Kinetics , Lactose/chemistry , Microscopy, Electron , Molecular Docking Simulation , X-Ray Diffraction
7.
Langmuir ; 28(25): 9714-21, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22621200

ABSTRACT

Many materials have been fabricated using electrospinning, including pharmaceutical formulations, superhydrophobic surfaces, catalysis supports, filters, and tissue engineering scaffolds. Often these materials can benefit from microparticles included within the electrospun fibers. In this work, we evaluate a high-throughput free surface electrospinning technique to prepare fibers containing microparticles. We investigate the spinnability of polyvinylpyrrolidone (PVP) solutions containing suspended polystyrene (PS) beads of 1, 3, 5, and 10 µm diameter in order to better understand free surface electrospinning of particle suspensions. PS bead suspensions with both 55 kDa PVP and 1.3 MDa PVP were spinnable at 1:10, 1:5, and 1:2 PS:PVP mass loadings for all particle sizes studied. The final average fiber diameters ranged from 0.47 to 1.2 µm and were independent of the particle size and particle loading, indicating that the fiber diameter can be smaller than the particles entrained and can furthermore be adjusted based on solution properties and electrospinning parameters, as is the case for electrospinning of solutions without particles.


Subject(s)
Microtechnology/methods , Ethanol/chemistry , Polystyrenes/chemistry , Povidone/chemistry , Surface Properties
8.
Mol Pharm ; 4(5): 782-93, 2007.
Article in English | MEDLINE | ID: mdl-17715989

ABSTRACT

Controlled precipitation produced aqueous nanoparticle suspensions of a poorly water soluble drug, itraconazole (ITZ), in an amorphous state, despite unusually high potencies (drug weight/total weight) of up to 94%. Adsorption of the amphiphilic stabilizer hydroxypropylmethylcellulose (HPMC) at the particle-aqueous solution interface arrested particle growth, producing surface areas from 13 to 51 m(2)/g. Dissolution of the particles in acidic media yielded high plateau levels in supersaturation up to 90 times the equilibrium solubility. The degree of supersaturation increased with particle curvature, as characterized by the surface area and described qualitatively by the Kelvin equation. A thermodynamic analysis indicated HPMC maintained amorphous ITZ in the solid phase with a fugacity 90 times the crystalline value, while it did not influence the fugacity of ITZ in the aqueous phase. High surface areas led to more rapid and levels of supersaturation higher than those seen for low-surface area solid dispersions, which undergo crystallization during slow dissolution. The rapid generation of high levels of supersaturation with potent amorphous nanoparticles, containing small amounts of stabilizers oriented at the particle surface, offers new opportunities for improving bioavailability of poorly water soluble drugs.


Subject(s)
Drug Design , Nanoparticles/chemistry , Buffers , Gases , Microscopy, Electron, Scanning , Nanoparticles/ultrastructure , Powders , Solubility , Solvents , Spectrophotometry , Surface Properties , Time Factors , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...