Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Virol ; 128: 104382, 2020 07.
Article in English | MEDLINE | ID: mdl-32388468

ABSTRACT

BACKGROUND: SARS-CoV-2 test kits are in critical shortage in many countries. This limits large-scale population testing and hinders the effort to identify and isolate infected individuals. OBJECTIVE: Herein, we developed and evaluated multi-stage group testing schemes that test samples in groups of various pool sizes in multiple stages. Through this approach, groups of negative samples can be eliminated with a single test, avoiding the need for individual testing and achieving considerable savings of resources. STUDY DESIGN: We designed and parameterized various multi-stage testing schemes and compared their efficiency at different prevalence rates using computer simulations. RESULTS: We found that three-stage testing schemes with pool sizes of maximum 16 samples can test up to three and seven times as many individuals with the same number of test kits for prevalence rates of around 5% and 1%, respectively. We propose an adaptive approach, where the optimal testing scheme is selected based on the expected prevalence rate. CONCLUSION: These group testing schemes could lead to a major reduction in the number of testing kits required and help improve large-scale population testing in general and in the context of the current COVID-19 pandemic.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , COVID-19 , Computer Simulation , Coronavirus Infections/virology , Humans , Mass Screening , Pneumonia, Viral/virology , Prevalence , SARS-CoV-2
2.
Philos Trans A Math Phys Eng Sci ; 376(2123)2018 Jul 13.
Article in English | MEDLINE | ID: mdl-29807900

ABSTRACT

We explore a distance-3 homological CSS quantum code, namely the small stellated dodecahedron code, for dense storage of quantum information and we compare its performance with the distance-3 surface code. The data and ancilla qubits of the small stellated dodecahedron code can be located on the edges respectively vertices of a small stellated dodecahedron, making this code suitable for three-dimensional connectivity. This code encodes eight logical qubits into 30 physical qubits (plus 22 ancilla qubits for parity check measurements) in contrast with one logical qubit into nine physical qubits (plus eight ancilla qubits) for the surface code. We develop fault-tolerant parity check circuits and a decoder for this code, allowing us to numerically assess the circuit-based pseudo-threshold.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'.

SELECTION OF CITATIONS
SEARCH DETAIL
...