Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Eur J Pharm Biopharm ; 167: 57-64, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34273544

ABSTRACT

The absorption of topically applied substances is challenging due to the effective skin barrier. Encapsulation of substances into nanoparticles was expected to be promising to increase the bioavailability of topically applied products. Since nanoparticles cannot traverse the intact skin barrier, but penetrate into the hair follicles, they could be used to deliver substances via hair follicles, where the active is released and can translocate independently transfollicularly into the viable epidermis. In the present in vivo study, this effect was investigated for caffeine. Caffeine nanocrystals of two sizes, 206 nm and 694 nm, with equal amounts of caffeine were used to study caffeine serum concentration kinetics after topical application on 5 human volunteers. The study demonstrated that at early time points, the smaller nanocrystals were more effective in increasing the bioavailability of caffeine, whereas after 20 min, the serum concentration of caffeine was higher when caffeine was applied by larger nanocrystals. Caffeine was still detectable after 5 days. The area under the curve could be increased by 82% when the 694 nm nanocrystals were applied. Especially larger sized nanocrystals seem to be a promising type of nanoparticulate preparation to increase the bioavailability of topically applied drugs via the transfollicular penetration pathway.


Subject(s)
Caffeine/administration & dosage , Nanoparticles , Skin Absorption , Administration, Cutaneous , Adult , Area Under Curve , Biological Availability , Caffeine/pharmacokinetics , Hair Follicle/metabolism , Humans , Male , Middle Aged , Particle Size , Skin/metabolism , Time Factors
2.
Hautarzt ; 70(3): 185-192, 2019 Mar.
Article in German | MEDLINE | ID: mdl-30627746

ABSTRACT

BACKGROUND: The hair follicle represents a significant penetration route for topically applied substances. ISSUE: The percutaneous absorption of substances can be significantly increased and accelerated by the involvement of hair follicles. In addition, nanoparticles have the characteristic to penetrate deeply and effectively into the hair follicles. MATERIALS AND METHODS: An optimization of drug delivery for topically applied substances is possible if the nanoparticles act solely as a carrier to transport active ingredients into the hair follicle. Once the nanocarrier has penetrated into the hair follicle, the active substance must be released there. This can be triggered by various mechanisms. RESULTS: The released drug can thus pass into the living tissue surrounding the hair follicle independently. With the help of this innovative strategy, the bioavailability of topically applied substances can be significantly improved. CONCLUSION: The transport of active ingredients into the hair follicles with the help of particles and the release of active substances there is a very effective new method for transporting active substances through the skin barrier.


Subject(s)
Drug Delivery Systems , Hair Follicle/metabolism , Nanoparticles/metabolism , Pharmaceutical Preparations/administration & dosage , Skin Absorption/physiology , Skin/metabolism , Administration, Cutaneous , Biocompatible Materials , Biological Transport , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...