Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 68(6): 954-65, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21848683

ABSTRACT

Plants acquire essential mineral nutrients such as phosphorus (P) and nitrogen (N) directly from the soil, but the majority of the vascular plants also gain access to these mineral nutrients through endosymbiotic associations with arbuscular mycorrhizal (AM) fungi. In AM symbiosis, the fungi deliver P and N to the root through branched hyphae called arbuscules. Previously we identified MtPT4, a Medicago truncatula phosphate transporter located in the periarbuscular membrane that is essential for symbiotic phosphate transport and for maintenance of the symbiosis. In mtpt4 mutants arbuscule degeneration occurs prematurely and symbiosis fails. Here, we show that premature arbuscule degeneration occurs in mtpt4 mutants even when the fungus has access to carbon from a nurse plant. Thus, carbon limitation is unlikely to be the primary cause of fungal death. Surprisingly, premature arbuscule degeneration is suppressed if mtpt4 mutants are deprived of nitrogen. In mtpt4 mutants with a low N status, arbuscule lifespan does not differ from that of the wild type, colonization of the mtpt4 root system occurs as in the wild type and the fungus completes its life cycle. Sulphur is another essential macronutrient delivered to the plant by the AM fungus; however, suppression of premature arbuscule degeneration does not occur in sulphur-deprived mtpt4 plants. The mtpt4 arbuscule phenotype is strongly correlated with shoot N levels. Analyses of an mtpt4-2 sunn-1 double mutant indicates that SUNN, required for N-mediated autoregulation of nodulation, is not involved. Together, the data reveal an unexpected role for N in the regulation of arbuscule lifespan in AM symbiosis.


Subject(s)
Medicago truncatula/metabolism , Mycorrhizae/metabolism , Nitrogen/metabolism , Phosphate Transport Proteins/metabolism , Symbiosis/physiology , Genes, Plant , Medicago truncatula/genetics , Mutation , Mycorrhizae/genetics , Phenotype , Phosphate Transport Proteins/genetics , Plant Roots/metabolism , Symbiosis/genetics
2.
Plant J ; 64(6): 1002-17, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21143680

ABSTRACT

Most terrestrial plants form arbuscular mycorrhiza (AM), mutualistic associations with soil fungi of the order Glomeromycota. The obligate biotrophic fungi trade mineral nutrients, mainly phosphate (P(i) ), for carbohydrates from the plants. Under conditions of high exogenous phosphate supply, when the plant can meet its own P requirements without the fungus, AM are suppressed, an effect which could be interpreted as an active strategy of the plant to limit carbohydrate consumption of the fungus by inhibiting its proliferation in the roots. However, the mechanisms involved in fungal inhibition are poorly understood. Here, we employ a transcriptomic approach to get insight into potential shifts in metabolic activity and symbiotic signalling, and in the defence status of plants exposed to high P(i) levels. We show that in mycorrhizal roots of petunia, a similar set of symbiosis-related genes is expressed as in mycorrhizal roots of Medicago, Lotus and rice. P(i) acts systemically to repress symbiotic gene expression and AM colonization in the root. In established mycorrhizal roots, P(i) repressed symbiotic gene expression rapidly, whereas the inhibition of colonization followed with a lag of more than a week. Taken together, these results suggest that P(i) acts by repressing essential symbiotic genes, in particular genes encoding enzymes of carotenoid and strigolactone biosynthesis, and symbiosis-associated phosphate transporters. The role of these effects in the suppression of symbiosis under high P(i) conditions is discussed.


Subject(s)
Mycorrhizae/physiology , Petunia/microbiology , Phosphates/pharmacology , Plant Roots/genetics , Expressed Sequence Tags , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Library , Oligonucleotide Array Sequence Analysis , Petunia/genetics , Petunia/physiology , Plant Roots/microbiology , Plant Roots/physiology , Symbiosis , Transcription, Genetic
3.
Mycol Res ; 110(Pt 3): 288-96, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16377166

ABSTRACT

Microsatellites are powerful markers to infer population genetic parameters. Here, 13 microsatellite loci isolated from a genomic and a cDNA library of Cryphonectria parasitica were used to characterize the genetic diversity and structure of four French populations. Twelve of these loci were polymorphic within populations, and average gene diversity (H(e)) was estimated to be 0.35. There was a lower genetic diversity in a south-eastern population relative to three south-western populations. In these three populations, microsatellite genotypic diversity was higher than vegetative compatibility type diversity. A high genetic differentiation (G(ST) = 0.27) suggested a low gene flow and/or founder effects of French populations which are in agreement with low dispersal of spores and different introductions of this species in southern France. This study demonstrates the significance of these microsatellite loci to assess gene flow and reproductive system in this important pathogen.


Subject(s)
Ascomycota/genetics , Microsatellite Repeats , Plant Diseases/microbiology , Ascomycota/classification , Genetic Variation , Linkage Disequilibrium
SELECTION OF CITATIONS
SEARCH DETAIL
...