Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 119(14): e2024357119, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35353621

ABSTRACT

Prostate epithelial cells have the unique capacity to secrete large amounts of citrate, but the carbon sources and metabolic pathways that maintain this production are not well known. We mapped potential pathways for citrate carbons in the human prostate cancer metastasis cell lines LNCaP and VCaP, for which we first established that they secrete citrate (For LNCaP 5.6 ± 0.9 nmol/h per 106 cells). Using 13C-labeled substrates, we traced the incorporation of 13C into citrate by NMR of extracellular fluid. Our results provide direct evidence that glucose is a main carbon source for secreted citrate. We also demonstrate that carbons from supplied glutamine flow via oxidative Krebs cycle and reductive carboxylation routes to positions in secreted citrate but likely do not contribute to its net synthesis. The potential anaplerotic carbon sources aspartate and asparagine did not contribute to citrate carbons. We developed a quantitative metabolic model employing the 13C distribution in extracellular citrate after 13C glucose and pyruvate application to assess intracellular pathways of carbons for secreted citrate. From this model, it was estimated that in LNCaP about 21% of pyruvate entering the Krebs cycle is converted via pyruvate carboxylase as an anaplerotic route at a rate more than sufficient to compensate carbon loss of this cycle by citrate secretion. This model provides an estimation of the fraction of molecules, including citrate, leaving the Krebs cycle at every turn. The measured ratios of 13C atoms at different positions in extracellular citrate may serve as biomarkers for (malignant) epithelial cell metabolism.


Subject(s)
Biomarkers, Tumor , Citric Acid , Prostatic Neoplasms , Biomarkers, Tumor/metabolism , Carbon/metabolism , Carbon Isotopes , Citrates , Citric Acid/metabolism , Citric Acid Cycle , Glucose/metabolism , Humans , Magnetic Resonance Spectroscopy , Male , Prostatic Neoplasms/metabolism
2.
ACS Appl Mater Interfaces ; 13(26): 30835-30843, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34170657

ABSTRACT

Two dominant crystalline phases of silicon carbide (SiC): α-SiC and ß-SiC, differing in size and chemical composition, were investigated regarding their potential for dynamic nuclear polarization (DNP). 29Si nuclei in α-SiC micro- and nanoparticles with sizes ranging from 650 nm to 2.2 µm and minimal oxidation were successfully hyperpolarized without the use of free radicals, while ß-SiC samples did not display appreciable degrees of polarization under the same polarization conditions. Long T1 relaxation times in α-SiC of up to 1600 s (∼27 min) were recorded for the 29Si nuclei after 1 h of polarization at a temperature of 4 K. Interestingly, these promising α-SiC particles allowed for direct hyperpolarization of both 29Si and 13C nuclei, resulting in comparably strong signal amplifications. Moreover, the T1 relaxation time of 13C nuclei in 750 nm-sized α-SiC particles was over 33 min, which far exceeds T1 times of conventional 13C DNP probes with values in the order of 1-2 min. The present work demonstrates the feasibility of DNP on SiC micro- and nanoparticles and highlights their potential as hyperpolarized magnetic resonance imaging agents.

3.
NMR Biomed ; 33(10): e4362, 2020 10.
Article in English | MEDLINE | ID: mdl-32662543

ABSTRACT

Reprogramming of energy metabolism in the development of prostate cancer can be exploited for a better diagnosis and treatment of the disease. The goal of this study was to determine whether differences in glucose and pyruvate metabolism of human prostate cancer cells with dissimilar aggressivenesses can be detected using hyperpolarized [1-13 C]pyruvate MRS and [18 F]FDG-PET imaging, and to evaluate whether these measures correlate. For this purpose, we compared murine xenografts of human prostate cancer LNCaP cells with those of more aggressive PC3 cells. [1-13 C]pyruvate was hyperpolarized by dissolution dynamic nuclear polarization (dDNP) and [1-13 C]pyruvate to lactate conversion was followed by 13 C MRS. Subsequently [18 F]FDG uptake was investigated by static and dynamic PET measurements. Standard uptake values (SUVs) for [18 F]FDG were significantly higher for xenografts of PC3 compared with those of LNCaP. However, we did not observe a difference in the average apparent rate constant kpl of 13 C label exchange from pyruvate to lactate between the tumor variants. A significant negative correlation was found between SUVs from [18 F]FDG PET measurements and kpl values for the xenografts of both tumor types. The kpl rate constant may be influenced by various factors, and studies with a range of prostate cancer cells in suspension suggest that LDH inhibition by pyruvate may be one of these. Our results indicate that glucose and pyruvate metabolism in the prostate cancer cell models differs from that in other tumor models and that [18 F]FDG-PET can serve as a valuable complementary tool in dDNP studies of aggressive prostate cancer with [1-13 C]pyruvate.


Subject(s)
Carbon-13 Magnetic Resonance Spectroscopy , Fluorodeoxyglucose F18/chemistry , Glucose/metabolism , Lactates/metabolism , Positron-Emission Tomography , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Pyruvic Acid/metabolism , Xenograft Model Antitumor Assays , Animals , Cell Line, Tumor , Energy Metabolism , Humans , Kinetics , Male , Mice, Inbred BALB C , Tissue Distribution
4.
Cancer Metab ; 7: 4, 2019.
Article in English | MEDLINE | ID: mdl-31139406

ABSTRACT

BACKGROUND: Mutations in isocitrate dehydrogenase 1 (IDH1) occur in various types of cancer and induce metabolic alterations resulting from the neomorphic activity that causes production of D-2-hydroxyglutarate (D-2-HG) at the expense of α-ketoglutarate (α-KG) and NADPH. To overcome metabolic stress induced by these alterations, IDH-mutated (IDH mut ) cancers utilize rescue mechanisms comprising pathways in which glutaminase and glutamate dehydrogenase (GLUD) are involved. We hypothesized that inhibition of glutamate processing with the pleiotropic GLUD-inhibitor epigallocatechin-3-gallate (EGCG) would not only hamper D-2-HG production, but also decrease NAD(P)H and α-KG synthesis in IDH mut cancers, resulting in increased metabolic stress and increased sensitivity to radiotherapy. METHODS: We performed 13C-tracing studies to show that HCT116 colorectal cancer cells with an IDH1 R132H knock-in allele depend more on glutaminolysis than on glycolysis for the production of D-2-HG. We treated HCT116 cells, HCT116-IDH1 R132H cells, and HT1080 cells (carrying an IDH1 R132C mutation) with EGCG and evaluated D-2-HG production, cell proliferation rates, and sensitivity to radiotherapy. RESULTS: Significant amounts of 13C from glutamate accumulate in D-2-HG in HCT116-IDH1 wt/R132H but not in HCT116-IDH1 wt/wt . Preventing glutamate processing in HCT116-IDH1 wt/R132H cells with EGCG resulted in reduction of D-2-HG production. In addition, EGCG treatment decreased proliferation rates of IDH1 mut cells and at high doses sensitized cancer cells to ionizing radiation. Effects of EGCG in IDH-mutated cell lines were diminished by treatment with the IDH1mut inhibitor AGI-5198. CONCLUSIONS: This work shows that glutamate can be directly processed into D-2-HG and that reduction of glutamatolysis may be an effective and promising new treatment option for IDH mut cancers.

5.
ACS Chem Neurosci ; 10(5): 2591-2601, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30873831

ABSTRACT

Imaging of hyperpolarized 13C-labeled substrates has emerged as an important magnetic resonance (MR) technique to study metabolic pathways in real time in vivo. Even though this technique has found its way to clinical trials, in vivo dynamic nuclear polarization is still mostly applied in preclinical models. Its tremendous increase in signal-to-noise ratio (SNR) overcomes the intrinsically low MR sensitivity of the 13C nucleus and allows real-time metabolic imaging in small structures like the mouse brain. However, applications in brain research are limited as delivery of hyperpolarized compounds is restrained by the blood-brain barrier (BBB). A local noninvasive disruption of the BBB could facilitate delivery of hyperpolarized substrates and create opportunities to study metabolic pathways in the brain that are generally not within reach. In this work, we designed a setup to apply BBB disruption in the mouse brain by MR-guided focused ultrasound (FUS) prior to MR imaging of 13C-enriched hyperpolarized [1-13C]-pyruvate and its conversion to [1-13C]-lactate. To overcome partial volume issues, we optimized a fast multigradient-echo imaging method (temporal resolution of 2.4 s) with an in-plane spatial resolution of 1.6 × 1.6 mm2, without the need of processing large amounts of spectroscopic data. We demonstrated the feasibility to apply 13C imaging in less than 1 h after FUS treatment and showed a locally disrupted BBB during the time window of the whole experiment. From detected hyperpolarized pyruvate and lactate signals in both FUS-treated and untreated mice, we conclude that even at high spatial resolution, signals from the blood compartment dominate in the 13C images, leaving the interpretation of hyperpolarized signals in the mouse brain challenging.


Subject(s)
Blood-Brain Barrier/physiology , Lactic Acid/metabolism , Pyruvic Acid/metabolism , Ultrasonic Waves , Animals , Carbon-13 Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging, Interventional/methods , Metabolic Networks and Pathways/physiology , Mice , Microscopy, Polarization/methods
6.
J Physiol ; 596(8): 1467-1483, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29455454

ABSTRACT

KEY POINTS: During exercise skeletal muscles use the energy buffer phosphocreatine. The post-exercise recovery of phosphocreatine is a measure of the oxidative capacity of muscles and is traditionally assessed by 31 P magnetic resonance spectroscopy of a large tissue region, assuming homogeneous energy metabolism. To test this assumption, we collected spatially resolved spectra along the length of human tibialis anterior using a home-built array of 31 P detection coils, and observed a striking gradient in the recovery rate of phosphocreatine, decreasing along the proximo-distal axis of the muscle. A similar gradient along this muscle was observed in signal changes recorded by 1 H muscle functional MRI. These findings identify intra-muscular variation in the physiology of muscles in action and highlight the importance of localized sampling for any methodology investigating oxidative metabolism of this, and potentially other muscles. ABSTRACT: The rate of phosphocreatine (PCr) recovery (kPCr ) after exercise, characterizing muscle oxidative capacity, is traditionally assessed with unlocalized 31 P magnetic resonance spectroscopy (MRS) using a single surface coil. However, because of intramuscular variation in fibre type and oxygen supply, kPCr may be non-uniform within muscles. We tested this along the length of the tibialis anterior (TA) muscle in 10 male volunteers. For this purpose, we employed a 3T MR system with a 31 P/1 H volume transmit coil combined with a home-built 31 P phased-array receive probe, consisting of five coil elements covering the TA muscle length. Mono-exponential kPCr was determined for all coil elements after 40 s of submaximal isometric dorsiflexion (SUBMAX) and incremental exercise to exhaustion (EXH). In addition, muscle functional MRI (1 H mfMRI) was performed using the volume coil after another 40 s of SUBMAX. A strong gradient in kPCr was observed along the TA (P < 0.001), being two times higher proximally vs. distally during SUBMAX and EXH. Statistical analysis showed that this gradient cannot be explained by pH variations. A similar gradient was seen in the slope of the initial post-exercise 1 H mfMRI signal change, which was higher proximally than distally in both the TA and the extensor digitorum longus (P < 0.001) and strongly correlated with kPCr . The pronounced differences along the TA in functional oxidative capacity identify regional variation in the physiological demand of this muscle during everyday activities and have implications for the bio-energetic assessment of interventions to modify its performance and of neuromuscular disorders involving the TA.


Subject(s)
Muscle, Skeletal/metabolism , Oxygen/metabolism , Phosphocreatine/metabolism , Recovery of Function , Adolescent , Adult , Exercise , Humans , Magnetic Resonance Imaging , Male , Muscle Contraction , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Oxidative Stress
7.
Magn Reson Med ; 75(3): 933-45, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25943445

ABSTRACT

PURPOSE: To assess the feasibility of prostate (1)H MR spectroscopic imaging (MRSI) using low-power spectral-spatial (SPSP) pulses at 7T, exploiting accurate spectral selection and spatial selectivity simultaneously. METHODS: A double spin-echo sequence was equipped with SPSP refocusing pulses with a spectral selectivity of 1 ppm. Three-dimensional prostate (1)H-MRSI at 7T was performed with the SPSP-MRSI sequence using an 8-channel transmit array coil and an endorectal receive coil in three patients with prostate cancer and in one healthy subject. No additional water or lipid suppression pulses were used. RESULTS: Prostate (1)H-MRSI could be obtained well within specific absorption rate (SAR) limits in a clinically feasible time (10 min). Next to the common citrate signals, the prostate spectra exhibited high spermine signals concealing creatine and sometimes also choline. Residual lipid signals were observed at the edges of the prostate because of limitations in spectral and spatial selectivity. CONCLUSION: It is possible to perform prostate (1)H-MRSI at 7T with a SPSP-MRSI sequence while using separate transmit and receive coils. This low-SAR MRSI concept provides the opportunity to increase spatial resolution of MRSI within reasonable scan times.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Spectroscopy/methods , Adult , Aged , Amines/chemistry , Citric Acid/chemistry , Humans , Male , Phantoms, Imaging , Prostate/chemistry , Prostate/metabolism , Prostate/physiology , Signal Processing, Computer-Assisted
8.
NMR Biomed ; 28(8): 1040-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26123400

ABSTRACT

Hyperpolarised (HP) (13)C NMR allows enzymatic activity to be probed in real time in live biological systems. The use of in vitro models gives excellent control of the cellular environment, crucial in the understanding of enzyme kinetics. The increased conversion of pyruvate to lactate in cancer cells has been well studied with HP (13)C NMR. Unfortunately, the equally important metabolic step of lactate transport out of the cell remains undetected, because intracellular and extracellular lactate are measured as a single resonance. Furthermore, typical experiments must be performed using tens of millions of cells, a large amount which can lead to a costly and sometimes highly challenging growing procedure. We present a relatively simple set-up that requires as little as two million cells with the spectral resolution to separate the intracellular and extracellular lactate resonances. The set-up is tested with suspensions of prostate cancer carcinoma cells (PC3) in combination with HP [1-(13)C]pyruvate. We obtained reproducible pyruvate to lactate label fluxes of 1.2 and 1.7 nmol/s per million cells at 2.5 and 5.0 mM pyruvate concentrations. The existence of a 3-Hz chemical shift difference between intracellular and extracellular lactate enabled us to determine the lactate transport rates in PC3. We deduced a lactate export rate of 0.3 s(-1) and observed a decrease in lactate transport on addition of the lactate transport inhibitor α-cyano-4-hydroxycinnamic acid.


Subject(s)
Carbon-13 Magnetic Resonance Spectroscopy/methods , Extracellular Fluid/metabolism , Intracellular Fluid/metabolism , Lactic Acid/metabolism , Prostatic Neoplasms/metabolism , Pyruvic Acid/metabolism , Biological Transport , Cell Count , Cell Line, Tumor , Humans , Male , Reproducibility of Results , Sensitivity and Specificity
10.
Biochem Soc Trans ; 40(2): 409-14, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22435821

ABSTRACT

Intracellular Ca2+ regulates the activity of the NCX (Na+/Ca2+ exchanger) through binding to the cytosolic CBD (Ca2+-binding domain) 1 and CBD2. In vitro studies of the structure and dynamics of CBD1 and CBD2, as well as studies of their kinetics and thermodynamics of Ca2+ binding, greatly enhanced our understanding of NCX regulation. We describe the fold of the CBDs in relation to other known structures and review Ca2+ binding of the different CBD variants from a structural perspective. We also report on new findings concerning Mg2+ binding to the CBDs and finally we discuss recent results on CBD1-CBD2 interdomain interactions.


Subject(s)
Calcium/metabolism , Magnesium/metabolism , Sodium-Calcium Exchanger/chemistry , Sodium-Calcium Exchanger/metabolism , Amino Acid Sequence , Animals , Humans , Molecular Sequence Data , Protein Binding , Protein Stability , Protein Structure, Tertiary , Structure-Activity Relationship
11.
Biochemistry ; 50(41): 8804-12, 2011 Oct 18.
Article in English | MEDLINE | ID: mdl-21928827

ABSTRACT

We report the effects of binding of Mg(2+) to the second Ca(2+)-binding domain (CBD2) of the sodium-calcium exchanger. CBD2 is known to bind two Ca(2+) ions using its Ca(2+)-binding sites I and II. Here, we show by nuclear magnetic resonance (NMR), circular dichroism, isothermal titration calorimetry, and mutagenesis that CBD2 also binds Mg(2+) at both sites, but with significantly different affinities. The results from Mg(2+)-Ca(2+) competition experiments show that Ca(2+) can replace Mg(2+) from site I, but not site II, and that Mg(2+) binding affects the affinity for Ca(2+). Furthermore, thermal unfolding circular dichroism data demonstrate that Mg(2+) binding stabilizes the domain. NMR chemical shift perturbations and (15)N relaxation data reveal that Mg(2+)-bound CBD2 adopts a state intermediate between the apo and fully Ca(2+)-loaded forms. Together, the data show that at physiological Mg(2+) concentrations CBD2 is loaded with Mg(2+) preferentially at site II, thereby stabilizing and structuring the domain and altering its affinity for Ca(2+).


Subject(s)
Calcium/chemistry , Neuronal Calcium-Sensor Proteins/metabolism , Neuropeptides/metabolism , Animals , Anisotropy , Binding Sites , Buffers , Calorimetry/methods , Circular Dichroism , Dogs , Kinetics , Magnesium/chemistry , Magnetic Resonance Spectroscopy/methods , Nitrogen Isotopes/chemistry , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Thermodynamics
12.
Curr Protoc Protein Sci ; Chapter 17: Unit17.5, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21488042

ABSTRACT

Any protein structure determination process contains several steps, starting from obtaining a suitable sample, then moving on to acquiring data and spectral assignment, and lastly to the final steps of structure determination and validation. This unit describes all of these steps, starting with the basic physical principles behind NMR and some of the most commonly measured and observed phenomena such as chemical shift, scalar and residual coupling, and the nuclear Overhauser effect. Then, in somewhat more detail, the process of spectral assignment and structure elucidation is explained. Furthermore, the use of NMR to study protein-ligand interaction, protein dynamics, or protein folding is described.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular/instrumentation , Protein Binding , Protein Conformation , Proteins/metabolism
13.
Proteins ; 78(8): 1813-24, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20187120

ABSTRACT

We report the effects of Ca(2+) binding on the backbone relaxation rates and chemical shifts of the AD and BD splice variants of the second Ca(2+)-binding domain (CBD2) of the sodium-calcium exchanger. Analysis of the Ca(2+)-induced chemical shifts perturbations yields similar K(D) values of 16-24 microM for the two CBD2-AD Ca(2+)-binding sites, and significant effects are observed up to 20 A away. To quantify the Ca(2+)-induced chemical shift changes, we performed a comparative analysis of eight Ca(2+)-binding proteins that revealed large differences between different protein folds. The CBD2 (15)N relaxation data show the CBD2-AD Ca(2+) coordinating loops to be more rigid in the Ca(2+)-bound state as well as to affect the FG-loop located at the opposite site of the domain. The equivalent loops of the CBD2-BD splice variant do not bind Ca(2+) and are much more dynamic relative to both the Ca(2+)-bound and apo forms of CBD2-AD. A more structured FG-loop in CBD2-BD is suggested by increased S(2) order parameter values relative to both forms of CBD2-AD. The chemical shift and relaxation data together indicate that, in spite of the small structural changes, the Ca(2+)-binding event is felt throughout the molecule. The data suggest that the FG-loop plays an important role in connecting the Ca(2+)-binding event with the other cytosolic domains of the NCX, in line with in vivo and in vitro biochemical data as well as modeling results that connect the CBD2 FG-loop with the first Ca(2+)-binding domain of NCX.


Subject(s)
Calcium/metabolism , Sodium-Calcium Exchanger/chemistry , Sodium-Calcium Exchanger/metabolism , Alternative Splicing/genetics , Animals , Dogs , Magnetic Resonance Spectroscopy , Motion , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Titrimetry
14.
Gen Comp Endocrinol ; 156(1): 104-12, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-18206885

ABSTRACT

We have tested the hypothesis that the type and kinetics of voltage-activated Ca(2+) channels in a neuroendocrine cell depend on the cell's long-term external input. For this purpose, the presence and kinetics of both low (LVA) and high-voltage-activated (HVA) L-type Ca(2+) channels have been assessed in melanotrope pituitary cells of the amphibian Xenopus laevis. The secretory activity of this cell type can readily be manipulated in vivo by changing the animal's environmental light condition, from a black to a white background. We here show that, compared to white background-adapted Xenopus, melanotropes from black background-adapted frogs have (1) a much larger size, as revealed by their 2.5 times larger membrane capacitance (P<0.001), (2) a 2 times higher HVA current density (P<0.05), (3) a clearly smaller Ca(2+)-dependent inactivation (10%; P<0.05), (4) L-type channels with 5 times slower activation and inactivation kinetics (P<0.05), and (5) slower kinetics of L-type channels that become faster and more similar to those in white-background adapted cells when the intracellular Ca(2+)-buffering capacity is reduced. Furthermore, white-adapted melanotropes possess LVA-type Ca(2+) channels, which are lacking from cells from black-adapted animals. The melanotrope calmodulin mRNA level does not differ between the two adaptation states. These results indicate that HVA L-type channel kinetics differ in relation to environmentally induced changes in cellular secretory state, probably mediated via intracellular Ca(2+)-buffering, whereas the occurrence of LVA Ca(2+) channels may depend on environmentally controlled channel gene expression.


Subject(s)
Calcium Channels, L-Type/metabolism , Environment , Light , Melanotrophs/metabolism , Xenopus Proteins/metabolism , Xenopus laevis/metabolism , Animals , Buffers , Calmodulin/metabolism , Cells, Cultured , Melanotrophs/cytology , Membrane Potentials/physiology , Patch-Clamp Techniques , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...