Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926581

ABSTRACT

Stable composite objects, such as hadrons, nuclei, atoms, molecules and superconducting pairs, formed by attractive forces are ubiquitous in nature. By contrast, composite objects stabilized by means of repulsive forces were long thought to be theoretical constructions owing to their fragility in naturally occurring systems. Surprisingly, the formation of bound atom pairs by strong repulsive interactions has been demonstrated experimentally in optical lattices1. Despite this success, repulsively bound particle pairs were believed to have no analogue in condensed matter owing to strong decay channels. Here we present spectroscopic signatures of repulsively bound three-magnon states and bound magnon pairs in the Ising-like chain antiferromagnet BaCo2V2O8. In large transverse fields, below the quantum critical point, we identify repulsively bound magnon states by comparing terahertz spectroscopy measurements to theoretical results for the Heisenberg-Ising chain antiferromagnet, a paradigmatic quantum many-body model2-5. Our experimental results show that these high-energy, repulsively bound magnon states are well separated from continua, exhibit notable dynamical responses and, despite dissipation, are sufficiently long-lived to be identified. As the transport properties in spin chains can be altered by magnon bound states, we envision that such states could serve as resources for magnonics-based quantum information processing technologies6-8.

2.
Nat Nanotechnol ; 17(7): 696-700, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35551241

ABSTRACT

Wireless technology relies on the conversion of alternating electromagnetic fields into direct currents, a process known as rectification. Although rectifiers are normally based on semiconductor diodes, quantum mechanical non-reciprocal transport effects that enable a highly controllable rectification were recently discovered1-9. One such effect is magnetochiral anisotropy (MCA)6-9, in which the resistance of a material or a device depends on both the direction of the current flow and an applied magnetic field. However, the size of rectification possible due to MCA is usually extremely small because MCA relies on inversion symmetry breaking that leads to the manifestation of spin-orbit coupling, which is a relativistic effect6-8. In typical materials, the rectification coefficient γ due to MCA is usually ∣γ∣ ≲ 1 A-1 T-1 (refs. 8-12) and the maximum values reported so far are ∣γ∣ ≈ 100 A-1 T-1 in carbon nanotubes13 and ZrTe5 (ref. 14). Here, to overcome this limitation, we artificially break the inversion symmetry via an applied gate voltage in thin topological insulator (TI) nanowire heterostructures and theoretically predict that such a symmetry breaking can lead to a giant MCA effect. Our prediction is confirmed via experiments on thin bulk-insulating (Bi1-xSbx)2Te3 (BST) TI nanowires, in which we observe an MCA consistent with theory and ∣γ∣ ≈ 100,000 A-1 T-1, a very large MCA rectification coefficient in a normal conductor.

3.
Nat Commun ; 12(1): 1038, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33589609

ABSTRACT

The non-trivial topology of three-dimensional topological insulators dictates the appearance of gapless Dirac surface states. Intriguingly, when made into a nanowire, quantum confinement leads to a peculiar gapped Dirac sub-band structure. This gap is useful for, e.g., future Majorana qubits based on TIs. Furthermore, these sub-bands can be manipulated by a magnetic flux and are an ideal platform for generating stable Majorana zero modes, playing a key role in topological quantum computing. However, direct evidence for the Dirac sub-bands in TI nanowires has not been reported so far. Here, using devices fabricated from thin bulk-insulating (Bi1-xSbx)2Te3 nanowires we show that non-equidistant resistance peaks, observed upon gate-tuning the chemical potential across the Dirac point, are the unique signatures of the quantized sub-bands. These TI nanowires open the way to address the topological mesoscopic physics, and eventually the Majorana physics when proximitized by an s-wave superconductor.

4.
Nano Lett ; 18(8): 5124-5131, 2018 08 08.
Article in English | MEDLINE | ID: mdl-30028140

ABSTRACT

One-dimensional Majorana modes are predicated to form in Josephson junctions based on three-dimensional topological insulators (TIs). While observations of supercurrents in Josephson junctions made on bulk-insulating TI samples have been reported recently, the Fraunhofer patters observed in such TI-based Josephson junctions, which sometimes present anomalous features, are still not well-understood. Here, we report our study of highly gate-tunable TI-based Josephson junctions made of one of the most bulk-insulating TI materials, BiSbTeSe2, and Al. The Fermi level can be tuned by gating across the Dirac point, and the high transparency of the Al-BiSbTeSe2 interface is evinced by a high characteristic voltage and multiple Andreev reflections, with peak indices reaching 12. Anomalous Fraunhofer patterns with missing lobes were observed in the entire range of gate voltage. We found that, by employing an advanced fitting procedure to use the maximum entropy method in a Monte Carlo algorithm, the anomalous Fraunhofer patterns are explained as a result of inhomogeneous supercurrent distributions on the TI surface in the junction. Besides establishing a highly promising fabrication technology, this work clarifies one of the important open issues regarding TI-based Josephson junctions.

5.
Sci Adv ; 3(12): eaao3773, 2017 12.
Article in English | MEDLINE | ID: mdl-29282449

ABSTRACT

Low-dimensional quantum magnets promote strong correlations between magnetic moments that lead to fascinating quantum phenomena. A particularly interesting system is the antiferromagnetic spin-1/2 Heisenberg chain because it is exactly solvable by the Bethe-Ansatz method. It is approximately realized in the magnetic insulator copper pyrazine dinitrate, providing a unique opportunity for a quantitative comparison between theory and experiment. We investigate its thermodynamic properties with a particular focus on the field-induced quantum phase transition. Thermal expansion, magnetostriction, specific heat, magnetization, and magnetocaloric measurements are found to be in excellent agreement with exact Bethe-Ansatz predictions. Close to the critical field, thermodynamics obeys the expected quantum critical scaling behavior, and in particular, the magnetocaloric effect and the Grüneisen parameters diverge in a characteristic manner. Beyond its importance for quantum magnetism, our study establishes a paradigm of a quantum phase transition, which illustrates fundamental principles of quantum critical thermodynamics.

6.
Nat Commun ; 8: 15545, 2017 05 25.
Article in English | MEDLINE | ID: mdl-28541291

ABSTRACT

With the recent discovery of Weyl semimetals, the phenomenon of negative magnetoresistance (MR) is attracting renewed interest. Large negative MR is usually related to magnetism, but the chiral anomaly in Weyl semimetals is a rare exception. Here we report a mechanism for large negative MR which is also unrelated to magnetism but is related to disorder. In the nearly bulk-insulating topological insulator TlBi0.15Sb0.85Te2, we observed gigantic negative MR reaching 98% in 14 T at 10 K, which is unprecedented in a nonmagnetic system. Supported by numerical simulations, we argue that this phenomenon is likely due to the Zeeman effect on a barely percolating current path formed in the disordered bulk. Since disorder can also lead to non-saturating linear MR in Ag2+δSe, the present finding suggests that disorder engineering in narrow-gap systems is useful for realizing gigantic MR in both positive and negative directions.

SELECTION OF CITATIONS
SEARCH DETAIL
...