Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
mSystems ; 8(4): e0028423, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37493648

ABSTRACT

The intra-host composition of horizontally transmitted microbial symbionts can vary across host populations due to interactive effects of host genetics, environmental, and geographic factors. While adaptation to local habitat conditions can drive geographic subdivision of symbiont strains, it is unknown how differences in ecological characteristics among host-symbiont associations influence the genomic structure of symbiont populations. To address this question, we sequenced metagenomes of different populations of the deep-sea mussel Bathymodiolus septemdierum, which are common at Western Pacific deep-sea hydrothermal vents and show characteristic patterns of niche partitioning with sympatric gastropod symbioses. Bathymodiolus septemdierum lives in close symbiotic relationship with sulfur-oxidizing chemosynthetic bacteria but supplements its symbiotrophic diet through filter-feeding, enabling it to occupy ecological niches with little exposure to geochemical reductants. Our analyses indicate that symbiont populations associated with B. septemdierum show structuring by geographic location, but that the dominant symbiont strain is uncorrelated with vent site. These patterns are in contrast to co-occurring Alviniconcha and Ifremeria gastropod symbioses that exhibit greater symbiont nutritional dependence and occupy habitats with higher spatial variability in environmental conditions. Our results suggest that relative habitat homogeneity combined with sufficient symbiont dispersal and genomic mixing might promote persistence of similar symbiont strains across geographic locations, while mixotrophy might decrease selective pressures on the host to affiliate with locally adapted symbiont strains. Overall, these data contribute to our understanding of the potential mechanisms influencing symbiont population structure across a spectrum of marine microbial symbioses that occupy contrasting ecological niches. IMPORTANCE Beneficial relationships between animals and microbial organisms (symbionts) are ubiquitous in nature. In the ocean, microbial symbionts are typically acquired from the environment and their composition across geographic locations is often shaped by adaptation to local habitat conditions. However, it is currently unknown how generalizable these patterns are across symbiotic systems that have contrasting ecological characteristics. To address this question, we compared symbiont population structure between deep-sea hydrothermal vent mussels and co-occurring but ecologically distinct snail species. Our analyses show that mussel symbiont populations are less partitioned by geography and do not demonstrate evidence for environmental adaptation. We posit that the mussel's mixotrophic feeding mode may lower its need to affiliate with locally adapted symbiont strains, while microhabitat stability and symbiont genomic mixing likely favors persistence of symbiont strains across geographic locations. Altogether, these findings further our understanding of the mechanisms shaping symbiont population structure in marine environmentally transmitted symbioses.


Subject(s)
Gastropoda , Hydrothermal Vents , Mytilidae , Animals , Hydrothermal Vents/microbiology , Mytilidae/genetics , Bacteria/genetics , Ecosystem , Geography , Gastropoda/microbiology
2.
Microbiome ; 11(1): 106, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37189129

ABSTRACT

BACKGROUND: Marine symbioses are predominantly established through horizontal acquisition of microbial symbionts from the environment. However, genetic and functional comparisons of free-living populations of symbionts to their host-associated counterparts are sparse. Here, we assembled the first genomes of the chemoautotrophic gammaproteobacterial symbionts affiliated with the deep-sea snail Alviniconcha hessleri from two separate hydrothermal vent fields of the Mariana Back-Arc Basin. We used phylogenomic and population genomic methods to assess sequence and gene content variation between free-living and host-associated symbionts. RESULTS: Our phylogenomic analyses show that the free-living and host-associated symbionts of A. hessleri from both vent fields are populations of monophyletic strains from a single species. Furthermore, genetic structure and gene content analyses indicate that these symbiont populations are differentiated by vent field rather than by lifestyle. CONCLUSION: Together, this work suggests that, despite the potential influence of host-mediated acquisition and release processes on horizontally transmitted symbionts, geographic isolation and/or adaptation to local habitat conditions are important determinants of symbiont population structure and intra-host composition. Video Abstract.


Subject(s)
Hydrothermal Vents , Animals , Hydrothermal Vents/microbiology , Snails/microbiology , Geography , Symbiosis/genetics , Phylogeny
3.
Evol Appl ; 16(1): 22-35, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36699127

ABSTRACT

Hydrothermal ecosystems face threats from planned deep-seabed mining activities, despite the fact that patterns of realized connectivity among vent-associated populations and communities are still poorly understood. Since populations of vent endemic species depend on larval dispersal to maintain connectivity and resilience to habitat changes, effective conservation strategies for hydrothermal ecosystems should include assessments of metapopulation dynamics. In this study, we combined population genetic methods with biophysical models to assess strength and direction of gene flow within four species of the genus Alviniconcha (A. boucheti, A. kojimai, A. strummeri and A. hessleri) that are ecologically dominant taxa at Western Pacific hydrothermal vents. In contrast to predictions from dispersal models, among-basin migration in A. boucheti occurred predominantly in an eastward direction, while populations within the North Fiji Basin were clearly structured despite the absence of oceanographic barriers. Dispersal models and genetic data were largely in agreement for the other Alviniconcha species, suggesting limited between-basin migration for A. kojimai, lack of genetic structure in A. strummeri within the Lau Basin and restricted gene flow between northern and southern A. hessleri populations in the Mariana back-arc as a result of oceanic current conditions. Our findings show that gene flow patterns in ecologically similar congeneric species can be remarkably different and surprisingly limited depending on environmental and evolutionary contexts. These results are relevant to regional conservation planning and to considerations of similar integrated analyses for any vent metapopulations under threat from seabed mining.

4.
G3 (Bethesda) ; 12(10)2022 09 30.
Article in English | MEDLINE | ID: mdl-35997584

ABSTRACT

Chemosynthetic animal-microbe symbioses sustain hydrothermal vent communities in the global deep sea. In the Indo-Pacific Ocean, hydrothermal ecosystems are often dominated by gastropod species of the genus Alviniconcha, which live in association with chemosynthetic Gammaproteobacteria or Campylobacteria. While the symbiont genomes of most extant Alviniconcha species have been sequenced, no genome information is currently available for the gammaproteobacterial endosymbiont of Alviniconcha adamantis-a comparatively shallow living species that is thought to be the ancestor to all other present Alviniconcha lineages. Here, we report the first genome sequence for the symbiont of A. adamantis from the Chamorro Seamount at the Mariana Arc. Our phylogenomic analyses show that the A. adamantis symbiont is most closely related to Chromatiaceae endosymbionts of the hydrothermal vent snails Alviniconcha strummeri and Chrysomallon squamiferum, but represents a distinct bacterial species or possibly genus. Overall, the functional capacity of the A. adamantis symbiont appeared to be similar to other chemosynthetic Gammaproteobacteria, though several flagella and chemotaxis genes were detected, which are absent in other gammaproteobacterial Alviniconcha symbionts. These differences might suggest potential contrasts in symbiont transmission dynamics, host recognition, or nutrient transfer. Furthermore, an abundance of genes for ammonia transport and urea usage could indicate adaptations to the oligotrophic waters of the Mariana region, possibly via recycling of host- and environment-derived nitrogenous waste products. This genome assembly adds to the growing genomic resources for chemosynthetic bacteria from hydrothermal vents and will be valuable for future comparative genomic analyses assessing gene content evolution in relation to environment and symbiotic lifestyles.


Subject(s)
Gammaproteobacteria , Hydrothermal Vents , Ammonia , Animals , Bacteria/genetics , Ecosystem , Gammaproteobacteria/genetics , Hydrothermal Vents/microbiology , Phylogeny , Snails , Symbiosis/genetics , Urea , Waste Products
5.
Genes (Basel) ; 13(6)2022 05 31.
Article in English | MEDLINE | ID: mdl-35741747

ABSTRACT

Deep hydrothermal vents are highly fragmented and unstable habitats at all temporal and spatial scales. Such environmental dynamics likely play a non-negligible role in speciation. Little is, however, known about the evolutionary processes that drive population-level differentiation and vent species isolation and, more specifically, how geography and habitat specialisation interplay in the species history of divergence. In this study, the species range and divergence of Alviniconcha snails that occupy active Western Pacific vent fields was assessed by using sequence variation data of the mitochondrial Cox1 gene, RNAseq, and ddRAD-seq. Combining morphological description and sequence datasets of the three species across five basins, we confirmed that A. kojimai, A. boucheti, and A. strummeri, while partially overlapping over their range, display high levels of divergence in the three genomic compartments analysed that usually encompass values retrieved for reproductively isolated species with divergences rang from 9% to 12.5% (mtDNA) and from 2% to 3.1% (nuDNA). Moreover, the three species can be distinguished on the basis of their external morphology by observing the distribution of bristles and the shape of the columella. According to this sampling, A. boucheti and A. kojimai form an east-to-west species abundance gradient, whereas A. strummeri is restricted to the Futuna Arc/Lau and North Fiji Basins. Surprisingly, population models with both gene flow and population size heterogeneities among genomes indicated that these three species are still able to exchange genes due to secondary contacts at some localities after a long period of isolation.


Subject(s)
Hydrothermal Vents , Animals , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Phylogeny , Snails
6.
Proc Biol Sci ; 289(1970): 20212137, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35259985

ABSTRACT

Vertical transmission of bacterial endosymbionts is accompanied by virtually irreversible gene loss that results in a progressive reduction in genome size. While the evolutionary processes of genome reduction have been well described in some terrestrial symbioses, they are less understood in marine systems where vertical transmission is rarely observed. The association between deep-sea vesicomyid clams and chemosynthetic Gammaproteobacteria is one example of maternally inherited symbioses in the ocean. Here, we assessed the contributions of drift, recombination and selection to genome evolution in two extant vesicomyid symbiont clades by comparing 15 representative symbiont genomes (1.017-1.586 Mb) to those of closely related bacteria and the hosts' mitochondria. Our analyses suggest that drift is a significant force driving genome evolution in vesicomyid symbionts, though selection and interspecific recombination appear to be critical for maintaining symbiont functional integrity and creating divergent patterns of gene conservation. Notably, the two symbiont clades possess putative functional differences in sulfide physiology, anaerobic respiration and dependency on environmental vitamin B12, which probably reflect adaptations to different ecological habitats available to each symbiont group. Overall, these results contribute to our understanding of the eco-evolutionary processes shaping reductive genome evolution in vertically transmitted symbioses.


Subject(s)
Bivalvia , Gammaproteobacteria , Animals , Bacteria/genetics , Bivalvia/genetics , Gammaproteobacteria/genetics , Genome Size , Genome, Bacterial , Phylogeny , Symbiosis/genetics
7.
Proc Natl Acad Sci U S A ; 119(14): e2115608119, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35349333

ABSTRACT

SignificanceIn marine ecosystems, transmission of microbial symbionts between host generations occurs predominantly through the environment. Yet, it remains largely unknown how host genetics, symbiont competition, environmental conditions, and geography shape the composition of symbionts acquired by individual hosts. To address this question, we applied population genomic approaches to four species of deep-sea hydrothermal vent snails that live in association with chemosynthetic bacteria. Our analyses show that environment is more important to strain-level symbiont composition than host genetics and that symbiont strains show genetic variation indicative of adaptation to the distinct geochemical conditions at each vent site. This corroborates a long-standing hypothesis that hydrothermal vent invertebrates affiliate with locally adapted symbiont strains to cope with the variable conditions characterizing their habitats.


Subject(s)
Hydrothermal Vents , Bacteria/genetics , Ecosystem , Hydrothermal Vents/microbiology , Metagenomics , Symbiosis/genetics
8.
Environ Microbiol Rep ; 14(2): 299-307, 2022 04.
Article in English | MEDLINE | ID: mdl-35170217

ABSTRACT

Symbioses between invertebrate animals and chemosynthetic bacteria build the foundation of deep-sea hydrothermal ecosystems worldwide. Despite the importance of these symbioses for ecosystem functioning, the diversity of symbionts within and between host organisms and geographic regions is still poorly understood. In this study we used 16S rRNA amplicon sequencing to determine the diversity of gill endosymbionts in provannid snails of the genera Alviniconcha and Ifremeria, which are key species at deep-sea hydrothermal vents in the Indo-Pacific Ocean. Our analysis of 761 snail samples across the distributional range of these species confirms previous findings that symbiont lineages are strongly partitioned by host species and broad-scale geography. Less structuring was observed within geographic regions, probably due to insufficient strain resolution of the 16S rRNA gene. Symbiont richness in individual hosts appeared to be unrelated to host size, suggesting that provannid snails might acquire their symbionts only during a permissive time window in early developmental stages in contrast to other vent molluscs that obtain their symbionts throughout their lifetime. Despite the extent of our dataset, symbiont accumulation curves did not reach saturation, highlighting the need for increased sampling efforts to uncover the full diversity of symbionts within these and other hydrothermal vent species.


Subject(s)
Hydrothermal Vents , Animals , Ecosystem , Hydrothermal Vents/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Snails/microbiology , Symbiosis
9.
ISME Commun ; 2(1): 117, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-37938735

ABSTRACT

There is growing recognition that microbiomes play substantial roles in animal eco-physiology and evolution. To date, microbiome research has largely focused on terrestrial animals, with far fewer studies on aquatic organisms, especially pelagic marine species. Pelagic animals are critical for nutrient cycling, yet are also subject to nutrient limitation and might thus rely strongly on microbiome digestive functions to meet their nutritional requirements. To better understand the composition and metabolic potential of midwater host-associated microbiomes, we applied amplicon and shotgun metagenomic sequencing to eleven mesopelagic animal species. Our analyses reveal that mesopelagic animal microbiomes are typically composed of bacterial taxa from the phyla Proteobacteria, Firmicutes, Bacteroidota and, in some cases, Campylobacterota. Overall, compositional and functional microbiome variation appeared to be primarily governed by host taxon and depth and, to a lesser extent, trophic level and diel vertical migratory behavior, though the impact of host specificity seemed to differ between migrating and non-migrating species. Vertical migrators generally showed lower intra-specific microbiome diversity (i.e., higher host specificity) than their non-migrating counterparts. These patterns were not linked to host phylogeny but may reflect differences in feeding behaviors, microbial transmission mode, environmental adaptations and other ecological traits among groups. The results presented here further our understanding of the factors shaping mesopelagic animal microbiomes and also provide some novel, genetically informed insights into their diets.

10.
Zootaxa ; 5214(3): 337-364, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-37044899

ABSTRACT

Mussels of the genus Bathymodiolus Kenk & Wilson belong to the foundation fauna at hydrothermal vents in the global deep sea. In the western Pacific and Indian oceans, the three nominal taxa B. septemdierum Hashimoto and Okutani, B. brevior Cosel, Métivier & Okutani and B. marisindicus Hashimoto are currently recognized as separate species despite morphological and genetic evidence for their conspecificity. All three are listed with the International Union for Conservation of Nature Red List based on highly restricted ranges. We compile and supplement existing morphometric and molecular data to revise the Bathymodiolus septemdierum species group. We redescribe B. septemdierum as a single species with B. brevior and B. marisindicus recognized as junior synonyms. Given the exceptionally broad range of B. septemdierum, we propose removal of these three taxa from the IUCN Red List.


Subject(s)
Bivalvia , Hydrothermal Vents , Mytilidae , Animals , Mytilidae/genetics , Indian Ocean
11.
ISME J ; 15(10): 3076-3083, 2021 10.
Article in English | MEDLINE | ID: mdl-33972724

ABSTRACT

The composition and diversity of animal microbiomes is shaped by a variety of factors, many of them interacting, such as host traits, the environment, and biogeography. Hybrid zones, in which the ranges of two host species meet and hybrids are found, provide natural experiments for determining the drivers of microbiome communities, but have not been well studied in marine environments. Here, we analysed the composition of the symbiont community in two deep-sea, Bathymodiolus mussel species along their known distribution range at hydrothermal vents on the Mid-Atlantic Ridge, with a focus on the hybrid zone where they interbreed. In-depth metagenomic analyses of the sulphur-oxidising symbionts of 30 mussels from the hybrid zone, at a resolution of single nucleotide polymorphism analyses of ~2500 orthologous genes, revealed that parental and hybrid mussels (F2-F4 generation) have genetically indistinguishable symbionts. While host genetics does not appear to affect symbiont composition in these mussels, redundancy analyses showed that geographic location of the mussels on the Mid-Atlantic Ridge explained most of the symbiont genetic variability compared to the other factors. We hypothesise that geographic structuring of the free-living symbiont population plays a major role in driving the composition of the microbiome in these deep-sea mussels.


Subject(s)
Hydrothermal Vents , Microbiota , Mytilidae , Animals , Gills , Microbiota/genetics , Mytilidae/genetics , Symbiosis
12.
Mol Biol Evol ; 37(12): 3469-3484, 2020 12 16.
Article in English | MEDLINE | ID: mdl-32658967

ABSTRACT

Despite significant advances in our understanding of speciation in the marine environment, the mechanisms underlying evolutionary diversification in deep-sea habitats remain poorly investigated. Here, we used multigene molecular clocks and population genetic inferences to examine processes that led to the emergence of the six extant lineages of Alviniconcha snails, a key taxon inhabiting deep-sea hydrothermal vents in the Indo-Pacific Ocean. We show that both allopatric divergence through historical vicariance and ecological isolation due to niche segregation contributed to speciation in this genus. The split between the two major Alviniconcha clades (separating A. boucheti and A. marisindica from A. kojimai, A. hessleri, and A. strummeri) probably resulted from tectonic processes leading to geographic separation, whereas the splits between co-occurring species might have been influenced by ecological factors, such as the availability of specific chemosynthetic symbionts. Phylogenetic origin of the sixth species, Alviniconcha adamantis, remains uncertain, although its sister position to other extant Alviniconcha lineages indicates a possible ancestral relationship. This study lays a foundation for future genomic studies aimed at deciphering the roles of local adaptation, reproductive biology, and host-symbiont compatibility in speciation of these vent-restricted snails.


Subject(s)
Genetic Speciation , Hydrothermal Vents , Snails/genetics , Animals , Fossils , Gammaproteobacteria , Gene Regulatory Networks , Phylogeny , Phylogeography , Snails/microbiology , Symbiosis , Sympatry
13.
ISME J ; 14(10): 2568-2579, 2020 10.
Article in English | MEDLINE | ID: mdl-32616905

ABSTRACT

Symbioses between invertebrate animals and chemosynthetic bacteria form the basis of hydrothermal vent ecosystems worldwide. In the Lau Basin, deep-sea vent snails of the genus Alviniconcha associate with either Gammaproteobacteria (A. kojimai, A. strummeri) or Campylobacteria (A. boucheti) that use sulfide and/or hydrogen as energy sources. While the A. boucheti host-symbiont combination (holobiont) dominates at vents with higher concentrations of sulfide and hydrogen, the A. kojimai and A. strummeri holobionts are more abundant at sites with lower concentrations of these reductants. We posit that adaptive differences in symbiont physiology and gene regulation might influence the observed niche partitioning between host taxa. To test this hypothesis, we used high-pressure respirometers to measure symbiont metabolic rates and examine changes in gene expression among holobionts exposed to in situ concentrations of hydrogen (H2: ~25 µM) or hydrogen sulfide (H2S: ~120 µM). The campylobacterial symbiont exhibited the lowest rate of H2S oxidation but the highest rate of H2 oxidation, with fewer transcriptional changes and less carbon fixation relative to the gammaproteobacterial symbionts under each experimental condition. These data reveal potential physiological adaptations among symbiont types, which may account for the observed net differences in metabolic activity and contribute to the observed niche segregation among holobionts.


Subject(s)
Gammaproteobacteria , Hydrothermal Vents , Animals , Ecosystem , Gammaproteobacteria/genetics , Phylogeny , Symbiosis
14.
PLoS One ; 15(1): e0227053, 2020.
Article in English | MEDLINE | ID: mdl-31940381

ABSTRACT

Vestimentiferan tubeworms are key taxa in deep-sea chemosynthetic habitats worldwide. As adults they obtain their nutrition through their sulfide-oxidizing bacterial endosymbionts, which are acquired from the environment. Although horizontal transmission should favor infections by various symbiotic microbes, the current paradigm holds that every tubeworm harbors only one endosymbiotic 16S rRNA phylotype. Although previous studies based on traditional Sanger sequencing have questioned these findings, population level high-throughput analyses of the symbiont 16S diversity are still missing. To get further insights into the symbiont genetic variation and uncover hitherto hidden diversity we applied state-of-the-art 16S-V4 amplicon sequencing to populations of the co-occurring tubeworm species Lamellibrachia barhami and Escarpia spicata that were collected during E/V Nautilus and R/V Western Flyer cruises to cold seeps in the eastern Pacific Ocean. In agreement with earlier work our sequence data indicated that L. barhami and E. spicata share one monomorphic symbiont phylotype. However, complementary CARD-FISH analyses targeting the 16S-V6 region implied the existence of an additional phylotype in L. barhami. Our results suggest that the V4 region might not be sufficiently variable to investigate diversity in the intra-host symbiont population at least in the analyzed sample set. This is an important finding given that this region has become the standard molecular marker for high-throughput microbiome analyses. Further metagenomic research will be necessary to solve these issues and to uncover symbiont diversity that is hidden below the 16S rRNA level.


Subject(s)
Bacteria/classification , Polychaeta/classification , Polychaeta/microbiology , Animals , Bacteria/genetics , Bacteria/metabolism , Biodiversity , Ecosystem , Electron Transport Complex IV/genetics , Geologic Sediments , Pacific Ocean , Polychaeta/genetics , Polychaeta/metabolism , RNA, Ribosomal, 16S/analysis , Symbiosis
15.
mBio ; 10(6)2019 12 17.
Article in English | MEDLINE | ID: mdl-31848270

ABSTRACT

The deep-sea tubeworm Riftia pachyptila lacks a digestive system but completely relies on bacterial endosymbionts for nutrition. Although the symbiont has been studied in detail on the molecular level, such analyses were unavailable for the animal host, because sequence information was lacking. To identify host-symbiont interaction mechanisms, we therefore sequenced the Riftia transcriptome, which served as a basis for comparative metaproteomic analyses of symbiont-containing versus symbiont-free tissues, both under energy-rich and energy-limited conditions. Our results suggest that metabolic interactions include nutrient allocation from symbiont to host by symbiont digestion and substrate transfer to the symbiont by abundant host proteins. We furthermore propose that Riftia maintains its symbiont by protecting the bacteria from oxidative damage while also exerting symbiont population control. Eukaryote-like symbiont proteins might facilitate intracellular symbiont persistence. Energy limitation apparently leads to reduced symbiont biomass and increased symbiont digestion. Our study provides unprecedented insights into host-microbe interactions that shape this highly efficient symbiosis.IMPORTANCE All animals are associated with microorganisms; hence, host-microbe interactions are of fundamental importance for life on earth. However, we know little about the molecular basis of these interactions. Therefore, we studied the deep-sea Riftia pachyptila symbiosis, a model association in which the tubeworm host is associated with only one phylotype of endosymbiotic bacteria and completely depends on this sulfur-oxidizing symbiont for nutrition. Using a metaproteomics approach, we identified both metabolic interaction processes, such as substrate transfer between the two partners, and interactions that serve to maintain the symbiotic balance, e.g., host efforts to control the symbiont population or symbiont strategies to modulate these host efforts. We suggest that these interactions are essential principles of mutualistic animal-microbe associations.


Subject(s)
Microbiota , Polychaeta/metabolism , Polychaeta/microbiology , Symbiosis , Adaptation, Biological , Animal Nutritional Physiological Phenomena , Animals , Aquatic Organisms , Energy Metabolism , Metabolic Networks and Pathways , Metabolome , Oxidation-Reduction , Polychaeta/ultrastructure , Proteome , Proteomics/methods , Seawater
16.
Mol Ecol ; 28(21): 4697-4708, 2019 11.
Article in English | MEDLINE | ID: mdl-31478269

ABSTRACT

Deep-sea vesicomyid clams live in mutualistic symbiosis with chemosynthetic bacteria that are inherited through the maternal germ line. On evolutionary timescales, strictly vertical transmission should lead to cospeciation of host mitochondrial and symbiont lineages; nonetheless, examples of incongruent phylogenies have been reported, suggesting that symbionts are occasionally horizontally transmitted between host species. The current paradigm for vesicomyid clams holds that direct transfers cause host shifts or mixtures of symbionts. An alternative hypothesis suggests that hybridization between host species might explain symbiont transfers. Two clam species, Archivesica gigas and Phreagena soyoae, frequently co-occur at deep-sea hydrocarbon seeps in the eastern Pacific Ocean. Although the two species typically host gammaproteobacterial symbiont lineages marked by divergent 16S rRNA phylotypes, we identified a number of clams with the A. gigas mitotype that hosted symbionts with the P. soyoae phylotype. Demographic inference models based on genome-wide SNP data and three Sanger sequenced gene markers provided evidence that A. gigas and P. soyoae hybridized in the past, supporting the hypothesis that hybridization might be a viable mechanism of interspecific symbiont transfer. These findings provide new perspectives on the evolution of vertically transmitted symbionts and their hosts in deep-sea chemosynthetic environments.


Subject(s)
Bivalvia/genetics , Hybridization, Genetic/genetics , Symbiosis/genetics , Animals , Bacteria/genetics , Evolution, Molecular , Genetic Markers/genetics , Genome/genetics , Host Specificity/genetics , Pacific Ocean , Phylogeny , Polymorphism, Single Nucleotide/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods
17.
Trends Ecol Evol ; 34(4): 342-354, 2019 04.
Article in English | MEDLINE | ID: mdl-30777295

ABSTRACT

Long-distance (>40-km) dispersal from marine reserves is poorly documented; yet, it can provide essential benefits such as seeding fished areas or connecting marine reserves into networks. From a meta-analysis, we suggest that the spatial scale of marine connectivity is underestimated due to the limited geographic extent of sampling designs. We also found that the largest marine reserves (>1000km2) are the most isolated. These findings have important implications for the assessment of evolutionary, ecological, and socio-economic long-distance benefits of marine reserves. We conclude that existing methods to infer dispersal should consider the up-to-date genomic advances and also expand the spatial scale of sampling designs. Incorporating long-distance connectivity in conservation planning will contribute to increase the benefits of marine reserve networks.


Subject(s)
Conservation of Natural Resources , Ecology , Animals , Fishes , Larva
18.
Sci Rep ; 8(1): 7983, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29789708

ABSTRACT

The blue mussel Mytilus is a popular food source with high economical value. Species of the M. edulis complex (M. edulis, M. galloprovincialis and M. trossulus) hybridise whenever their geographic ranges overlap posing difficulties to species discrimination, which is important for blue mussel aquaculture. The aim of this study was to determine the genetic structure of farmed blue mussels in Kiel Fjord. Microbial and metabolic profile patterns were studied to investigate a possible dependency on the genotype of the bivalves. Genotyping confirmed the complex genetic structure of the Baltic Sea hybrid zone and revealed an unexpected dominance of M. trossulus alleles being in contrast to the predominance of M. edulis alleles described for wild Baltic blue mussels. Culture-dependent and -independent microbial community analyses indicated the presence of a diverse Mytilus-associated microbiota, while an LC-MS/MS-based metabolome study identified 76 major compounds dominated by pigments, alkaloids and polyketides in the whole tissue extracts. Analysis of mussel microbiota and metabolome did not indicate genotypic dependence, but demonstrated high intraspecific variability of farmed mussel individuals. We hypothesise that individual differences in microbial and metabolite patterns may be caused by high individual plasticity and might be enhanced by e.g. nutritional condition, age and gender.


Subject(s)
Metabolome , Microbiota , Mytilus edulis , Mytilus , Animals , Aquaculture , Chromatography, Liquid , Estuaries , Gene Frequency , Genotype , Genotyping Techniques/veterinary , Metabolome/physiology , Mytilus/genetics , Mytilus/metabolism , Mytilus/microbiology , Mytilus edulis/genetics , Mytilus edulis/metabolism , Mytilus edulis/microbiology , Tandem Mass Spectrometry
19.
Mol Ecol ; 26(10): 2765-2782, 2017 May.
Article in English | MEDLINE | ID: mdl-28238204

ABSTRACT

While secondary contact between Mytilus edulis and Mytilus trossulus in North America results in mosaic hybrid zone formation, both species form a hybrid swarm in the Baltic. Despite pervasive gene flow, Baltic Mytilus species maintain substantial genetic and phenotypic differentiation. Exploring mechanisms underlying the contrasting genetic composition in Baltic Mytilus species will allow insights into processes such as speciation or adaptation to extremely low salinity. Previous studies in the Baltic indicated that only weak interspecific reproductive barriers exist and discussed the putative role of adaptation to environmental conditions. Using a combination of hydrodynamic modelling and multilocus genotyping, we investigate how oceanographic conditions influence passive larval dispersal and hybrid swarm formation in the Baltic. By combining our analyses with previous knowledge, we show a genetic transition of Baltic Mytilus species along longitude 12°-13°E, that is a virtual line between Malmö (Sweden) and Stralsund (Germany). Although larval transport only occurs over short distances (10-30 km), limited larval dispersal could not explain the position of this genetic transition zone. Instead, the genetic transition zone is located at the area of maximum salinity change (15-10 psu). Thus, we argue that selection results in weak reproductive barriers and local adaptation. This scenario could maintain genetic and phenotypic differences between Baltic Mytilus species despite pervasive introgressive hybridization.


Subject(s)
Animal Distribution , Genetics, Population , Hydrodynamics , Mytilus/genetics , Animals , Baltic States , Genotype , Germany , Larva , Sweden
20.
BMC Evol Biol ; 17(1): 13, 2017 01 13.
Article in English | MEDLINE | ID: mdl-28086786

ABSTRACT

BACKGROUND: The analysis of hybrid zones is crucial for gaining a mechanistic understanding of the process of speciation and the maintenance of species boundaries. Hybrid zones have been studied intensively in terrestrial and shallow-water ecosystems, but very little is known about their occurrence in deep-sea environments. Here we used diagnostic, single nucleotide polymorphisms in combination with one mitochondrial gene to re-examine prior hypotheses about a contact zone involving deep-sea hydrothermal vent mussels, Bathymodiolus azoricus and B. puteoserpentis, living along the Mid-Atlantic Ridge. RESULTS: Admixture was found to be asymmetric with respect to the parental species, while introgression was more widespread geographically than previously recognized. Admixed individuals with a majority of alleles from one of the parental species were most frequent in habitats corresponding to that species. Mussels found at a geographically intermediate vent field constituted a genetically mixed population that showed no evidence for hybrid incompatibilities, a finding that does not support a previously inferred tension zone model. CONCLUSIONS: Our analyses indicate that B. azoricus and B. puteoserpentis hybridize introgressively across a large geographic area without evidence for general hybrid incompatibilities. While these findings shed new light onto the genetic structure of this hybrid zone, many aspects about its nature still remain obscure. Our study sets a baseline for further research that should primarily focus on the acquisition of additional mussel samples and environmental data, a detailed exploration of vent areas and hidden populations as well as genomic analyses in both mussel hosts and their bacterial symbionts.


Subject(s)
Bivalvia/genetics , Hybridization, Genetic , Animals , Ecosystem , Gene Transfer, Horizontal , Genetics, Population , Hydrothermal Vents , Mytilidae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...