Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
J Exp Bot ; 57(11): 2785-94, 2006.
Article in English | MEDLINE | ID: mdl-16831844

ABSTRACT

High grain protein content (GPC) is a frequent target of wheat breeding programmes because of its positive effect on bread and pasta quality. A wild wheat allele at the Gpc-B1 locus with a significant impact on this trait was identified previously. The precise mapping of several senescence-related traits in a set of tetraploid recombinant substitution lines (RSLs) segregating for Gpc-B1 is reported here. Flag leaf chlorophyll degradation, change in peduncle colour, and spike water content were completely linked to the Gpc-B1 locus and to the differences in GPC within a 0.3 cM interval corresponding to a physical distance of only 250 kb. The effect of Gpc-B1 was also examined in different environments and genetic backgrounds using a set of tetraploid and hexaploid pairs of isogenic lines. The results were consistent with those observed in the RSLs. The high GPC allele conferred a shorter duration of grain fill due to earlier flag leaf senescence and increased GPC in all four genetic backgrounds. The effect on grain size was more variable, depending on the genotype-environment combinations. These results are consistent with a model in which the wild-type allele of Gpc-B1 accelerates senescence in flag leaves producing pleiotropic effects on nitrogen remobilization, total GPC, and grain size.


Subject(s)
Genes, Plant/physiology , Plant Proteins/metabolism , Triticum/metabolism , Alleles , Cellular Senescence , Chlorophyll/metabolism , Physical Chromosome Mapping , Plant Proteins/genetics , Plant Proteins/physiology , Polyploidy , Triticum/genetics , Triticum/growth & development , Water/metabolism
2.
Electron. j. biotechnol ; 9(3)June 2006. ilus
Article in English | LILACS | ID: lil-448821

ABSTRACT

Leaf rust resistance gene Lr47 is located within a interstitial segment of Triticum speltoides Taush. 7S chromosome translocated to the short arm of chromosome 7A of bread wheat. This gene is resistant against currently predominant races of leaf rust from Argentina. The objectives of this study were to identify microsatellites linked to this source of resistance as a potential tool to introgress this source of resistance. Isogenic lines with and without Lr47 developed from 10 cultivars/breeding lines as well as 10 microsatellites previously mapped in 7AS chromosome were used in this study. Microsatellite gwm 60 was the only marker that co-segregated completely linked to Lr47. These data indicate that gwm 60 could be a valuable marker to introgress Lr47 in wheat germplasm.

3.
Theor Appl Genet ; 112(1): 97-105, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16208504

ABSTRACT

Several new races of the stripe rust pathogen have become frequent throughout the wheat growing regions of the United States since 2000. These new races are virulent to most of the wheat seedling resistance genes limiting the resistance sources that can be used to combat this pathogen. High-temperature adult-plant (HTAP) stripe rust resistance has proven to be more durable than seedling resistance due to its non-race-specific nature, but its use is limited by the lack of mapping information. We report here the identification of a new HTAP resistance gene from Triticum turgidum ssp. dicoccoides (DIC) designated as Yr36. Lines carrying this gene were susceptible to almost all the stripe rust pathogen races tested at the seedling stage but showed adult-plant resistance to the prevalent races in California when tested at high diurnal temperatures. Isogenic lines for this gene were developed by six backcross generations. Field tests in two locations showed increased levels of field resistance to stripe rust and increased yields in isogenic lines carrying the Yr36 gene compared to those without the gene. Recombinant substitution lines of chromosome 6B from DIC in the isogenic background of durum cv. Langdon were used to map the Yr36 gene on the short arm of chromosome 6B completely linked to Xbarc101, and within a 2-cM interval defined by PCR-based markers Xucw71 and Xbarc136. Flanking locus Xucw71 is also closely linked to the grain protein content locus Gpc-B1 (0.3-cM). Marker-assisted selection strategies are presented to improve stripe rust resistance and simultaneously select for high or low Gpc-B1 alleles.


Subject(s)
Hot Temperature , Immunity, Innate/genetics , Plant Diseases/microbiology , Triticum/genetics , Chromosome Mapping , Chromosomes, Plant , Crosses, Genetic , Genetic Markers , Genotype , Phenotype , Triticum/microbiology , Triticum/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...