Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798553

ABSTRACT

Lymphocyte activation involves a transition from quiescence and associated catabolic metabolism to a metabolic state with noted similarities to cancer cells such as heavy reliance on aerobic glycolysis for energy demands and increased nutrient requirements for biomass accumulation and cell division 1-3 . Following antigen receptor ligation, lymphocytes require spatiotemporally distinct "second signals". These include costimulatory receptor or cytokine signaling, which engage discrete programs that often involve remodeling of organelles and increased nutrient uptake or synthesis to meet changing biochemical demands 4-6 . One such signaling molecule, IL-4, is a highly pleiotropic cytokine that was first identified as a B cell co-mitogen over 30 years ago 7 . However, how IL-4 signaling mechanistically supports B cell proliferation is incompletely understood. Here, using single cell RNA sequencing we find that the cholesterol biosynthetic program is transcriptionally upregulated following IL-4 signaling during the early B cell response to influenza virus infection, and is required for B cell activation in vivo . By limiting lipid availability in vitro , we determine cholesterol to be essential for B cells to expand their endoplasmic reticulum, progress through cell cycle, and proliferate. In sum, we demonstrate that the well-known ability of IL-4 to act as a B cell growth factor is through a previously unknown rewiring of specific lipid anabolic programs, relieving sensitivity of cells to environmental nutrient availability.

2.
Nature ; 627(8004): 628-635, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383790

ABSTRACT

Interleukin-10 (IL-10) is a key anti-inflammatory cytokine that can limit immune cell activation and cytokine production in innate immune cell types1. Loss of IL-10 signalling results in life-threatening inflammatory bowel disease in humans and mice-however, the exact mechanism by which IL-10 signalling subdues inflammation remains unclear2-5. Here we find that increased saturated very long chain (VLC) ceramides are critical for the heightened inflammatory gene expression that is a hallmark of IL-10 deficiency. Accordingly, genetic deletion of ceramide synthase 2 (encoded by Cers2), the enzyme responsible for VLC ceramide production, limited the exacerbated inflammatory gene expression programme associated with IL-10 deficiency both in vitro and in vivo. The accumulation of saturated VLC ceramides was regulated by a decrease in metabolic flux through the de novo mono-unsaturated fatty acid synthesis pathway. Restoring mono-unsaturated fatty acid availability to cells deficient in IL-10 signalling limited saturated VLC ceramide production and the associated inflammation. Mechanistically, we find that persistent inflammation mediated by VLC ceramides is largely dependent on sustained activity of REL, an immuno-modulatory transcription factor. Together, these data indicate that an IL-10-driven fatty acid desaturation programme rewires VLC ceramide accumulation and aberrant activation of REL. These studies support the idea that fatty acid homeostasis in innate immune cells serves as a key regulatory node to control pathologic inflammation and suggests that 'metabolic correction' of VLC homeostasis could be an important strategy to normalize dysregulated inflammation caused by the absence of IL-10.


Subject(s)
Inflammation , Interleukin-10 , Sphingolipids , Animals , Humans , Mice , Ceramides/chemistry , Ceramides/metabolism , Fatty Acids, Unsaturated/biosynthesis , Fatty Acids, Unsaturated/metabolism , Homeostasis , Immunity, Innate , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Interleukin-10/deficiency , Interleukin-10/genetics , Interleukin-10/metabolism , Proto-Oncogene Proteins c-rel , Sphingolipids/metabolism
3.
bioRxiv ; 2023 May 08.
Article in English | MEDLINE | ID: mdl-37214856

ABSTRACT

Unchecked chronic inflammation is the underlying cause of many diseases, ranging from inflammatory bowel disease to obesity and neurodegeneration. Given the deleterious nature of unregulated inflammation, it is not surprising that cells have acquired a diverse arsenal of tactics to limit inflammation. IL-10 is a key anti-inflammatory cytokine that can limit immune cell activation and cytokine production in innate immune cell types; however, the exact mechanism by which IL-10 signaling subdues inflammation remains unclear. Here, we find that IL-10 signaling constrains sphingolipid metabolism. Specifically, we find increased saturated very long chain (VLC) ceramides are critical for the heightened inflammatory gene expression that is a hallmark of IL-10-deficient macrophages. Genetic deletion of CerS2, the enzyme responsible for VLC ceramide production, limited exacerbated inflammatory gene expression associated with IL-10 deficiency both in vitro and in vivo , indicating that "metabolic correction" is able to reduce inflammation in the absence of IL-10. Surprisingly, accumulation of saturated VLC ceramides was regulated by flux through the de novo mono-unsaturated fatty acid (MUFA) synthesis pathway, where addition of exogenous MUFAs could limit both saturated VLC ceramide production and inflammatory gene expression in the absence of IL-10 signaling. Together, these studies mechanistically define how IL-10 signaling manipulates fatty acid metabolism as part of its molecular anti-inflammatory strategy and could lead to novel and inexpensive approaches to regulate aberrant inflammation.

4.
Nature ; 606(7914): 585-593, 2022 06.
Article in English | MEDLINE | ID: mdl-35483404

ABSTRACT

Severe COVID-19 is characterized by persistent lung inflammation, inflammatory cytokine production, viral RNA and a sustained interferon (IFN) response, all of which are recapitulated and required for pathology in the SARS-CoV-2-infected MISTRG6-hACE2 humanized mouse model of COVID-19, which has a human immune system1-20. Blocking either viral replication with remdesivir21-23 or the downstream IFN-stimulated cascade with anti-IFNAR2 antibodies in vivo in the chronic stages of disease attenuates the overactive immune inflammatory response, especially inflammatory macrophages. Here we show that SARS-CoV-2 infection and replication in lung-resident human macrophages is a critical driver of disease. In response to infection mediated by CD16 and ACE2 receptors, human macrophages activate inflammasomes, release interleukin 1 (IL-1) and IL-18, and undergo pyroptosis, thereby contributing to the hyperinflammatory state of the lungs. Inflammasome activation and the accompanying inflammatory response are necessary for lung inflammation, as inhibition of the NLRP3 inflammasome pathway reverses chronic lung pathology. Notably, this blockade of inflammasome activation leads to the release of infectious virus by the infected macrophages. Thus, inflammasomes oppose host infection by SARS-CoV-2 through the production of inflammatory cytokines and suicide by pyroptosis to prevent a productive viral cycle.


Subject(s)
COVID-19 , Inflammasomes , Macrophages , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , COVID-19/pathology , COVID-19/physiopathology , COVID-19/virology , Humans , Inflammasomes/metabolism , Interleukin-1 , Interleukin-18 , Lung/pathology , Lung/virology , Macrophages/metabolism , Macrophages/pathology , Macrophages/virology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pneumonia/metabolism , Pneumonia/virology , Pyroptosis , Receptors, IgG , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity
5.
bioRxiv ; 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34611663

ABSTRACT

Severe COVID-19 is characterized by persistent lung inflammation, inflammatory cytokine production, viral RNA, and sustained interferon (IFN) response all of which are recapitulated and required for pathology in the SARS-CoV-2 infected MISTRG6-hACE2 humanized mouse model of COVID-19 with a human immune system 1-20 . Blocking either viral replication with Remdesivir 21-23 or the downstream IFN stimulated cascade with anti-IFNAR2 in vivo in the chronic stages of disease attenuated the overactive immune-inflammatory response, especially inflammatory macrophages. Here, we show SARS-CoV-2 infection and replication in lung-resident human macrophages is a critical driver of disease. In response to infection mediated by CD16 and ACE2 receptors, human macrophages activate inflammasomes, release IL-1 and IL-18 and undergo pyroptosis thereby contributing to the hyperinflammatory state of the lungs. Inflammasome activation and its accompanying inflammatory response is necessary for lung inflammation, as inhibition of the NLRP3 inflammasome pathway reverses chronic lung pathology. Remarkably, this same blockade of inflammasome activation leads to the release of infectious virus by the infected macrophages. Thus, inflammasomes oppose host infection by SARS-CoV-2 by production of inflammatory cytokines and suicide by pyroptosis to prevent a productive viral cycle.

7.
Genes Dev ; 34(23-24): 1735-1752, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33184218

ABSTRACT

FGFs are key developmental regulators that engage a signal transduction cascade through receptor tyrosine kinases, prominently engaging ERK1/2 but also other pathways. However, it remains unknown whether all FGF activities depend on this canonical signal transduction cascade. To address this question, we generated allelic series of knock-in Fgfr1 and Fgfr2 mouse strains, carrying point mutations that disrupt binding of signaling effectors, and a kinase dead allele of Fgfr2 that broadly phenocopies the null mutant. When interrogated in cranial neural crest cells, we identified discrete functions for signaling pathways in specific craniofacial contexts, but point mutations, even when combined, failed to recapitulate the single or double null mutant phenotypes. Furthermore, the signaling mutations abrogated established FGF-induced signal transduction pathways, yet FGF functions such as cell-matrix and cell-cell adhesion remained unaffected, though these activities did require FGFR kinase activity. Our studies establish combinatorial roles of Fgfr1 and Fgfr2 in development and uncouple novel FGFR kinase-dependent cell adhesion properties from canonical intracellular signaling.


Subject(s)
Fibroblast Growth Factors/physiology , Gene Expression Regulation, Developmental/genetics , Signal Transduction/genetics , Animals , Cell Adhesion/genetics , Cell Death/genetics , Cells, Cultured , Mice , Mutation , Neural Crest/cytology , Protein Kinases/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Receptors, Fibroblast Growth Factor/genetics , Receptors, Fibroblast Growth Factor/metabolism
8.
Nature ; 580(7804): 524-529, 2020 04.
Article in English | MEDLINE | ID: mdl-32322056

ABSTRACT

The initiation of an intestinal tumour is a probabilistic process that depends on the competition between mutant and normal epithelial stem cells in crypts1. Intestinal stem cells are closely associated with a diverse but poorly characterized network of mesenchymal cell types2,3. However, whether the physiological mesenchymal microenvironment of mutant stem cells affects tumour initiation remains unknown. Here we provide in vivo evidence that the mesenchymal niche controls tumour initiation in trans. By characterizing the heterogeneity of the intestinal mesenchyme using single-cell RNA-sequencing analysis, we identified a population of rare pericryptal Ptgs2-expressing fibroblasts that constitutively process arachidonic acid into highly labile prostaglandin E2 (PGE2). Specific ablation of Ptgs2 in fibroblasts was sufficient to prevent tumour initiation in two different models of sporadic, autochthonous tumorigenesis. Mechanistically, single-cell RNA-sequencing analyses of a mesenchymal niche model showed that fibroblast-derived PGE2 drives the expansion οf a population of Sca-1+ reserve-like stem cells. These express a strong regenerative/tumorigenic program, driven by the Hippo pathway effector Yap. In vivo, Yap is indispensable for Sca-1+ cell expansion and early tumour initiation and displays a nuclear localization in both mouse and human adenomas. Using organoid experiments, we identified a molecular mechanism whereby PGE2 promotes Yap dephosphorylation, nuclear translocation and transcriptional activity by signalling through the receptor Ptger4. Epithelial-specific ablation of Ptger4 misdirected the regenerative reprogramming of stem cells and prevented Sca-1+ cell expansion and sporadic tumour initiation in mutant mice, thereby demonstrating the robust paracrine control of tumour-initiating stem cells by PGE2-Ptger4. Analyses of patient-derived organoids established that PGE2-PTGER4 also regulates stem-cell function in humans. Our study demonstrates that initiation of colorectal cancer is orchestrated by the mesenchymal niche and reveals a mechanism by which rare pericryptal Ptgs2-expressing fibroblasts exert paracrine control over tumour-initiating stem cells via the druggable PGE2-Ptger4-Yap signalling axis.


Subject(s)
Carcinogenesis , Colorectal Neoplasms/pathology , Intestines/pathology , Mesoderm/pathology , Neoplastic Stem Cells/pathology , Paracrine Communication , Stem Cell Niche , Adaptor Proteins, Signal Transducing/metabolism , Animals , Antigens, Ly/metabolism , Arachidonic Acid/metabolism , Cell Cycle Proteins/metabolism , Cell Proliferation , Colorectal Neoplasms/metabolism , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , Membrane Proteins/metabolism , Mesoderm/metabolism , Mice , Neoplastic Stem Cells/metabolism , Organoids/metabolism , Organoids/pathology , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Single-Cell Analysis , YAP-Signaling Proteins
9.
Nat Rev Nephrol ; 15(5): 263-274, 2019 05.
Article in English | MEDLINE | ID: mdl-30796361

ABSTRACT

The recognition that intestinal microbiota exert profound effects on human health has led to major advances in our understanding of disease processes. Studies over the past 20 years have shown that host components, including components of the host immune system, shape the microbial community. Pathogenic alterations in commensal microorganisms contribute to disease manifestations that are generally considered to be noncommunicable, such as inflammatory bowel disease, diabetes mellitus and liver disease, through a variety of mechanisms, including effects on host immunity. More recent studies have shed new light on how the immune system and microbiota might also drive the pathogenesis of renal disorders. In this Review, we discuss the latest insights into the mechanisms regulating the microbiome composition, with a focus both on genetics and environmental factors, and describe how commensal microorganisms calibrate innate and adaptive immune responses to affect the activation threshold for pathogenic stimulations. We discuss the mechanisms that lead to intestinal epithelial barrier inflammation and the relevance of certain bacteria to the pathogenesis of two common kidney-based disorders: hypertension and renal stone disease. Limitations of current approaches to microbiota research are also highlighted, emphasizing the need to move beyond studies of correlation to causation.


Subject(s)
Gastrointestinal Microbiome/immunology , Kidney Diseases/immunology , Kidney Diseases/microbiology , Adaptive Immunity , Gene-Environment Interaction , Humans , Immunity, Innate , Kidney Diseases/genetics
10.
Nature ; 564(7736): 434-438, 2018 12.
Article in English | MEDLINE | ID: mdl-30542152

ABSTRACT

The annotation of the mammalian protein-coding genome is incomplete. Arbitrary size restriction of open reading frames (ORFs) and the absolute requirement for a methionine codon as the sole initiator of translation have constrained the identification of potentially important transcripts with non-canonical protein-coding potential1,2. Here, using unbiased transcriptomic approaches in macrophages that respond to bacterial infection, we show that ribosomes associate with a large number of RNAs that were previously annotated as 'non-protein coding'. Although the idea that such non-canonical ORFs can encode functional proteins is controversial3,4, we identify a range of short and non-ATG-initiated ORFs that can generate stable and spatially distinct proteins. Notably, we show that the translation of a new ORF 'hidden' within the long non-coding RNA Aw112010 is essential for the orchestration of mucosal immunity during both bacterial infection and colitis. This work expands our interpretation of the protein-coding genome and demonstrates that proteinaceous products generated from non-canonical ORFs are crucial for the immune response in vivo. We therefore propose that the misannotation of non-canonical ORF-containing genes as non-coding RNAs may obscure the essential role of a multitude of previously undiscovered protein-coding genes in immunity and disease.


Subject(s)
Immunity, Mucosal/genetics , Open Reading Frames/genetics , Protein Biosynthesis , RNA, Long Noncoding/genetics , Animals , Bacterial Infections/genetics , Bacterial Infections/immunology , Bacterial Infections/metabolism , Bacterial Infections/microbiology , Colitis/genetics , Colitis/immunology , Colitis/metabolism , Immunity, Mucosal/drug effects , Interleukin-12/biosynthesis , Lipopolysaccharides/pharmacology , Macrophages/immunology , Macrophages/metabolism , Mice , Protein Biosynthesis/drug effects , Protein Biosynthesis/genetics , RNA, Long Noncoding/metabolism , Ribosomes/drug effects , Ribosomes/metabolism , Salmonella typhimurium/immunology , Transcriptome/drug effects , Transcriptome/genetics
11.
Dev Cell ; 41(5): 511-526.e4, 2017 06 05.
Article in English | MEDLINE | ID: mdl-28552557

ABSTRACT

Activation of the FGF signaling pathway during preimplantation development of the mouse embryo is known to be essential for differentiation of the inner cell mass and the formation of the primitive endoderm (PrE). We now show using fluorescent reporter knockin lines that Fgfr1 is expressed in all cell populations of the blastocyst, while Fgfr2 expression becomes restricted to extraembryonic lineages, including the PrE. We further show that loss of both receptors prevents the development of the PrE and demonstrate that FGFR1 plays a more prominent role in this process than FGFR2. Finally, we document an essential role for FGFRs in embryonic stem cell (ESC) differentiation, with FGFR1 again having a greater influence than FGFR2 in ESC exit from the pluripotent state. Collectively, these results identify mechanisms through which FGF signaling regulates inner cell mass lineage restriction and cell commitment during preimplantation development.


Subject(s)
Embryo, Mammalian/cytology , Embryonic Stem Cells/cytology , Endoderm/cytology , Fibroblast Growth Factor 4/metabolism , Receptor, Fibroblast Growth Factor, Type 1/physiology , Receptor, Fibroblast Growth Factor, Type 2/physiology , Animals , Blastocyst Inner Cell Mass/cytology , Blastocyst Inner Cell Mass/metabolism , Cell Differentiation , Cell Lineage , Cells, Cultured , Embryo, Mammalian/metabolism , Embryonic Stem Cells/metabolism , Endoderm/metabolism , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction
12.
Genes Dev ; 30(7): 751-71, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27036966

ABSTRACT

The fibroblast growth factor (Fgf) family of ligands and receptor tyrosine kinases is required throughout embryonic and postnatal development and also regulates multiple homeostatic functions in the adult. Aberrant Fgf signaling causes many congenital disorders and underlies multiple forms of cancer. Understanding the mechanisms that govern Fgf signaling is therefore important to appreciate many aspects of Fgf biology and disease. Here we review the mechanisms of Fgf signaling by focusing on genetic strategies that enable in vivo analysis. These studies support an important role for Erk1/2 as a mediator of Fgf signaling in many biological processes but have also provided strong evidence for additional signaling pathways in transmitting Fgf signaling in vivo.


Subject(s)
Fibroblast Growth Factors/physiology , Signal Transduction/genetics , Animals , Cell Differentiation/genetics , Embryonic Development/genetics , Enzyme Activation/genetics , Fibroblast Growth Factors/genetics , Humans , Protein Binding
13.
Genes Dev ; 29(17): 1863-74, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26341559

ABSTRACT

Fibroblast growth factor (Fgf) signaling governs multiple processes important in development and disease. Many lines of evidence have implicated Erk1/2 signaling induced through Frs2 as the predominant effector pathway downstream from Fgf receptors (Fgfrs), but these receptors can also signal through other mechanisms. To explore the functional significance of the full range of signaling downstream from Fgfrs in mice, we engineered an allelic series of knock-in point mutations designed to disrupt Fgfr1 signaling functions individually and in combination. Analysis of each mutant indicates that Frs2 binding to Fgfr1 has the most pleiotropic functions in development but also that the receptor uses multiple proteins additively in vivo. In addition to Frs2, Crk proteins and Plcγ also contribute to Erk1/2 activation, affecting axis elongation and craniofacial and limb development and providing a biochemical mechanism for additive signaling requirements. Disruption of all known signaling functions diminished Erk1/2 and Plcγ activation but did not recapitulate the peri-implantation Fgfr1-null phenotype. This suggests that Erk1/2-independent signaling pathways are functionally important for Fgf signaling in vivo.


Subject(s)
Embryonic Development/genetics , Gene Expression Regulation, Developmental/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Signal Transduction , Alleles , Animals , Embryo, Mammalian , Endoderm/embryology , Gene Knock-In Techniques , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mutation , Receptor, Fibroblast Growth Factor, Type 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...