Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Metab Dispos ; 48(3): 187-197, 2020 03.
Article in English | MEDLINE | ID: mdl-31955137

ABSTRACT

Doxorubicin is a widely used cancer therapeutic, but its effectiveness is limited by cardiotoxic side effects. Evidence suggests cardiotoxicity is due not to doxorubicin, but rather its metabolite, doxorubicinol. Identification of the enzymes responsible for doxorubicinol formation is important in developing strategies to prevent cardiotoxicity. In this study, the contributions of three murine candidate enzymes to doxorubicinol formation were evaluated: carbonyl reductase (Cbr) 1, Cbr3, and thioredoxin reductase 1 (Tr1). Analyses with purified proteins revealed that all three enzymes catalyzed doxorubicin-dependent NADPH oxidation, but only Cbr1 and Cbr3 catalyzed doxorubicinol formation. Doxorubicin-dependent NADPH oxidation by Tr1 was likely due to redox cycling. Subcellular fractionation results showed that doxorubicin-dependent redox cycling activity was primarily microsomal, whereas doxorubicinol-forming activity was exclusively cytosolic, as were all three enzymes. An immunoclearing approach was used to assess the contributions of the three enzymes to doxorubicinol formation in the complex milieu of the cytosol. Immunoclearing Cbr1 eliminated 25% of the total doxorubicinol-forming activity in cytosol, but immunoclearing Cbr3 had no effect, even in Tr1 null livers that overexpressed Cbr3. The immunoclearing results constituted strong evidence that Cbr1 contributed to doxorubicinol formation in mouse liver but that enzymes other than Cbr1 also played a role, a conclusion supported by ammonium sulfate fractionation results, which showed that doxorubicinol-forming activity was found in fractions that contained little Cbr1. In conclusion, the results show that Cbr1 accounts for 25% of the doxorubicinol-forming activity in mouse liver cytosol but that the majority of the doxorubicinol-forming activity remains unidentified. SIGNIFICANCE STATEMENT: Earlier studies suggested carbonyl reductase (Cbr) 1 plays a dominant role in converting chemotherapeutic doxorubicin to cardiotoxic doxorubicinol, but a new immunoclearing approach described herein shows that Cbr1 accounts for only 25% of the doxorubicinol-forming activity in mouse liver cytosol, that two other candidate enzymes-Cbr3 and thioredoxin reductase 1-play no role, and that the majority of the activity remains unidentified. Thus, targeting Cbr1 is necessary but not sufficient to eliminate doxorubicinol-associated cardiotoxicity; identification of the additional doxorubicinol-forming activity is an important next challenge.


Subject(s)
Alcohol Oxidoreductases/metabolism , Cardiotoxicity/metabolism , Doxorubicin/metabolism , Liver/metabolism , Animals , Cytosol/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NADP/metabolism , Oxidation-Reduction
2.
Biochemistry ; 56(17): 2328-2337, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28409622

ABSTRACT

Biochemical and structural studies demonstrate that S100A1 is involved in a Ca2+-dependent interaction with the type 2α and type 2ß regulatory subunits of protein kinase A (PKA) (RIIα and RIIß) to activate holo-PKA. The interaction was specific for S100A1 because other calcium-binding proteins (i.e., S100B and calmodulin) had no effect. Likewise, a role for S100A1 in PKA-dependent signaling was established because the PKA-dependent subcellular redistribution of HDAC4 was abolished in cells derived from S100A1 knockout mice. Thus, the Ca2+-dependent interaction between S100A1 and the type 2 regulatory subunits represents a novel mechanism that provides a link between Ca2+ and PKA signaling, which is important for the regulation of gene expression in skeletal muscle via HDAC4 cytosolic-nuclear trafficking.


Subject(s)
Calcium Signaling , Cyclic AMP-Dependent Protein Kinase RIIalpha Subunit/metabolism , Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit/metabolism , Histone Deacetylases/metabolism , Muscle Fibers, Skeletal/metabolism , S100 Proteins/metabolism , Active Transport, Cell Nucleus , Animals , Cells, Cultured , Cyclic AMP-Dependent Protein Kinase RIIalpha Subunit/genetics , Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit/genetics , Enzyme Activation , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Histone Deacetylases/genetics , Humans , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/enzymology , Protein Subunits/genetics , Protein Subunits/metabolism , Rats , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/metabolism , S100 Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...