Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 58(23): 7537-7550, 2019 06 03.
Article in English | MEDLINE | ID: mdl-30628136

ABSTRACT

Reviewed herein is the development of novel polymer-supported [2Fe-2S] catalyst systems for electrocatalytic and photocatalytic hydrogen evolution reactions. [FeFe] hydrogenases are the best known naturally occurring metalloenzymes for hydrogen generation, and small-molecule, [2Fe-2S]-containing mimetics of the active site (H-cluster) of these metalloenzymes have been synthesized for years. These small [2Fe-2S] complexes have not yet reached the same capacity as that of enzymes for hydrogen production. Recently, modern polymer chemistry has been utilized to construct an outer coordination sphere around the [2Fe-2S] clusters to provide site isolation, water solubility, and improved catalytic activity. In this review, the various macromolecular motifs and the catalytic properties of these polymer-supported [2Fe-2S] materials are surveyed. The most recent catalysts that incorporate a single [2Fe-2S] complex, termed single-site [2Fe-2S] metallopolymers, exhibit superior activity for H2 production.


Subject(s)
Hydrogen/metabolism , Hydrogenase/metabolism , Iron-Sulfur Proteins/metabolism , Metalloproteins/metabolism , Catalysis , Catalytic Domain , Humans , Hydrogenase/chemistry , Iron-Sulfur Proteins/chemistry , Metalloproteins/chemistry , Oxidation-Reduction
2.
Angew Chem Int Ed Engl ; 57(37): 11898-11902, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30053346

ABSTRACT

Electrocatalytic [FeFe]-hydrogenase mimics for the hydrogen evolution reaction (HER) generally suffer from low activity, high overpotential, aggregation, oxygen sensitivity, and low solubility in water. By using atom-transfer radical polymerization (ATRP), a new class of [FeFe]-metallopolymers with precise molar mass, defined composition, and low polydispersity, has been prepared. The synthetic methodology introduced here allows facile variation of polymer composition to optimize the [FeFe] solubility, activity, and long-term chemical and aerobic stability. Water soluble functional metallopolymers facilitate electrocatalytic hydrogen production in neutral water with loadings as low as 2 ppm and operate at rates an order of magnitude faster than hydrogenases (2.5×105  s-1 ), and with low overpotential requirement. Furthermore, unlike the hydrogenases, these systems are insensitive to oxygen during catalysis, with turnover numbers on the order of 40 000 under both anaerobic and aerobic conditions.


Subject(s)
Biomimetic Materials/chemistry , Coordination Complexes/chemistry , Hydrogen/chemistry , Water/chemistry , Biomimetic Materials/metabolism , Catalysis , Catalytic Domain , Coordination Complexes/metabolism , Electrochemical Techniques , Electrodes , Hydrogen/metabolism , Hydrogenase/chemistry , Hydrogenase/metabolism , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism
3.
ACS Macro Lett ; 7(11): 1383-1387, 2018 Nov 20.
Article in English | MEDLINE | ID: mdl-35651247

ABSTRACT

Small-molecule catalysts inspired by the active sites of [FeFe]-hydrogenase enzymes have long struggled to achieve fast rates of hydrogen evolution, long-term stability, water solubility, and oxygen compatibility. We profoundly improved on these deficiencies by grafting polymers from a metalloinitiator containing a [2Fe-2S] moiety to form water-soluble poly(2-dimethylamino)ethyl methacrylate metallopolymers (PDMAEMA-g-[2Fe-2S]) using atom transfer radical polymerization (ATRP). This study illustrates the critical role of the polymer composition in enhancing hydrogen evolution and aerobic stability by comparing the catalytic activity of PDMAEMA-g-[2Fe-2S] with a nonionic water-soluble metallopolymer based on poly(oligo(ethylene glycol) methacrylate) prepared via ATRP (POEGMA-g-[2Fe-2S]) with the same [2Fe-2S] metalloinitiator. Additionally, the tunability of catalyst activity is demonstrated by the synthesis of metallocopolymers incorporating the 2-(dimethylamino)ethyl methacrylate (DMAEMA) and oligo(ethylene glycol) methacrylate (OEGMA) monomers. Electrochemical investigations into these metallo(co)polymers show that PDMAEMA-g-[2Fe-2S] retains complete aerobic stability with catalytic current densities in excess of 20 mA·cm-2, while POEGMA-g-[2Fe-2S] fails to reach 1 mA·cm-2 current density even with the application of high overpotentials (η > 0.8 V) and loses all activity in the presence of oxygen. Random copolymers of the two monomers polymerized with the same [2Fe-2S] initiator showed intermediate activity in terms of current density, overpotential, and aerobic stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...