Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(8): 112824, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37481725

ABSTRACT

Circular RNAs are generated by backsplicing and control cellular signaling and phenotypes. Pericytes stabilize capillary structures and play important roles in the formation and maintenance of blood vessels. Here, we characterize hypoxia-regulated circular RNAs (circRNAs) in human pericytes and show that the circular RNA of procollagen-lysine,2-oxoglutarate 5-dioxygenase-2 (circPLOD2) is induced by hypoxia and regulates pericyte functions. Silencing of circPLOD2 affects pericytes and increases proliferation, migration, and secretion of soluble angiogenic proteins, thereby enhancing endothelial migration and network capability. Transcriptional and epigenomic profiling of circPLOD2-depleted cells reveals widespread changes in gene expression and identifies the transcription factor krüppel-like factor 4 (KLF4) as a key effector of the circPLOD2-mediated changes. KLF4 depletion mimics circPLOD2 silencing, whereas KLF4 overexpression reverses the effects of circPLOD2 depletion on proliferation and endothelial-pericyte interactions. Together, these data reveal an important function of circPLOD2 in controlling pericyte proliferation and capillary formation and show that the circPLOD2-mediated regulation of KLF4 significantly contributes to the transcriptional response to hypoxia.


Subject(s)
Pericytes , RNA, Circular , Humans , Hypoxia/metabolism , Pericytes/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism
2.
Nucleic Acids Res ; 51(2): 870-890, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36620874

ABSTRACT

Hypoxia induces massive changes in alternative splicing (AS) to adapt cells to the lack of oxygen. Here, we identify the splicing factor SRSF6 as a key factor in the AS response to hypoxia. The SRSF6 level is strongly reduced in acute hypoxia, which serves a dual purpose: it allows for exon skipping and triggers the dispersal of nuclear speckles. Our data suggest that cells use dispersal of nuclear speckles to reprogram their gene expression during hypoxic adaptation and that SRSF6 plays an important role in cohesion of nuclear speckles. Down-regulation of SRSF6 is achieved through inclusion of a poison cassette exon (PCE) promoted by SRSF4. Removing the PCE 3' splice site using CRISPR/Cas9 abolishes SRSF6 reduction in hypoxia. Aberrantly high SRSF6 levels in hypoxia attenuate hypoxia-mediated AS and impair dispersal of nuclear speckles. As a consequence, proliferation and genomic instability are increased, while the stress response is suppressed. The SRSF4-PCE-SRSF6 hypoxia axis is active in different cancer types, and high SRSF6 expression in hypoxic tumors correlates with a poor prognosis. We propose that the ultra-conserved PCE of SRSF6 acts as a tumor suppressor and that its inclusion in hypoxia is crucial to reduce SRSF6 levels. This may prevent tumor cells from entering the metastatic route of hypoxia adaptation.


Subject(s)
Cell Hypoxia , Nuclear Speckles , RNA Splicing , Serine-Arginine Splicing Factors , Humans , Alternative Splicing , Exons/genetics , Phosphoproteins/genetics , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , HeLa Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...