Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Food Microbiol ; 316: 108441, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-31778839

ABSTRACT

Even though non-Saccharomyces yeasts were regarded as spoilage microorganisms for a long time, their abilities to improve and diversify the aromatic profile of wines are now well recognized. Consequently, their use in combination with S. cerevisiae strains during winemaking has attracted substantial attention over the last decade. However, our limited understanding of the metabolism and physiology of these species remains a barrier to promoting efficient exploitation of their full potential. In this study, we further explored the metabolism involved in the production of fermentative volatile compounds of two commercial non-Saccharomyces strains, T. delbrueckii Biodiva™ and M. pulcherrima Flavia®, in comparison with the reference wine yeast S. cerevisiae Lalvin EC1118®. After growing these strains in the presence of 24 different N-compounds, particular attention was paid to the influence of the nitrogen source on the profile of aroma compounds synthesized by these yeasts (higher alcohols and acids, medium-chain fatty acids and their acetate or ethyl esters derivatives). A comprehensive analysis of the dataset showed that these three species were able to produce all the fermentative aromas, regardless of the nitrogen source, demonstrating the key contribution of the central carbon metabolism to the formation of volatile molecules. Nevertheless, we also observed some specific phenotypic traits for each of the strains in their assimilation capacities for the various nitrogen nutrients as well as in their response to the nature of the nitrogen source in terms of the production of volatile molecules. These observations revealed the intricacy and interconnection between the networks involved in nitrogen consumption and aroma production. These differences are likely related to the genetic backgrounds of the strains. Overall, this study expands our understanding of the metabolic processes responsible for the formation of volatile compounds during wine fermentation and their variations according to species and the nature of the nitrogen source. This knowledge provides a new platform for the more efficient exploitation of non-Saccharomyces strains during winemaking, improving the management of the fermentation.


Subject(s)
Nitrogen/metabolism , Odorants , Saccharomycetales/metabolism , Volatile Organic Compounds/metabolism , Fermentation , Odorants/analysis , Phenotype , Saccharomyces cerevisiae/metabolism , Saccharomycetales/classification , Species Specificity , Volatile Organic Compounds/analysis , Wine/analysis , Wine/microbiology
2.
Microb Cell Fact ; 15: 58, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-27044358

ABSTRACT

BACKGROUND: S. cerevisiae has attracted considerable interest in recent years as a model for ecology and evolutionary biology, revealing a substantial genetic and phenotypic diversity. However, there is a lack of knowledge on the diversity of metabolic networks within this species. RESULTS: To identify the metabolic and evolutionary constraints that shape metabolic fluxes in S. cerevisiae, we used a dedicated constraint-based model to predict the central carbon metabolism flux distribution of 43 strains from different ecological origins, grown in wine fermentation conditions. In analyzing these distributions, we observed a highly contrasted situation in flux variability, with quasi-constancy of the glycolysis and ethanol synthesis yield yet high flexibility of other fluxes, such as the pentose phosphate pathway and acetaldehyde production. Furthermore, these fluxes with large variability showed multimodal distributions that could be linked to strain origin, indicating a convergence between genetic origin and flux phenotype. CONCLUSIONS: Flux variability is pathway-dependent and, for some flux, a strain origin effect can be found. These data highlight the constraints shaping the yeast operative central carbon network and provide clues for the design of strategies for strain improvement.


Subject(s)
Carbon/metabolism , Ecosystem , Genetic Variation , Metabolic Networks and Pathways , Phenotype , Saccharomyces cerevisiae/metabolism , Adaptation, Biological/genetics , Cellular Microenvironment/genetics , Evolution, Molecular , Genotype , Glycolysis/genetics , Metabolic Networks and Pathways/genetics , Microbiological Techniques/methods , Pentose Phosphate Pathway/genetics , Saccharomyces cerevisiae/genetics
3.
PLoS One ; 6(9): e25147, 2011.
Article in English | MEDLINE | ID: mdl-21949874

ABSTRACT

The species Saccharomyces cerevisiae includes natural strains, clinical isolates, and a large number of strains used in human activities. The aim of this work was to investigate how the adaptation to a broad range of ecological niches may have selectively shaped the yeast metabolic network to generate specific phenotypes. Using 72 S. cerevisiae strains collected from various sources, we provide, for the first time, a population-scale picture of the fermentative metabolic traits found in the S. cerevisiae species under wine making conditions. Considerable phenotypic variation was found suggesting that this yeast employs diverse metabolic strategies to face environmental constraints. Several groups of strains can be distinguished from the entire population on the basis of specific traits. Strains accustomed to growing in the presence of high sugar concentrations, such as wine yeasts and strains obtained from fruits, were able to achieve fermentation, whereas natural yeasts isolated from "poor-sugar" environments, such as oak trees or plants, were not. Commercial wine yeasts clearly appeared as a subset of vineyard isolates, and were mainly differentiated by their fermentative performances as well as their low acetate production. Overall, the emergence of the origin-dependent properties of the strains provides evidence for a phenotypic evolution driven by environmental constraints and/or human selection within S. cerevisiae.


Subject(s)
Adaptation, Physiological , Biodiversity , Carbohydrates/chemistry , Fermentation , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/metabolism , Wine/microbiology , Biological Evolution , Environment , Humans , Phenotype , Plants/metabolism , Quercus/metabolism , Saccharomyces cerevisiae/isolation & purification , Wine/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...