Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Autism ; : 13623613241246502, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725311

ABSTRACT

LAY ABSTRACT: Sleep problems are common in children with autism spectrum disorder. Although the effects of parent-based sleep intervention were shown to be promising, previous research was limited to the face-to-face service model, which might limit accessibility. This study examined a sleep-focused parent training group delivered via telehealth for treating insomnia in preschool children with autism spectrum disorder, which allowed parents to join the intervention remotely. Results showed that children in the intervention group had greater improvements in sleep and insomnia symptoms after treatment, as compared to those who only received care as usual. This sleep-focused treatment also led to improved daytime behaviors, especially externalizing problems such as hyperactivity and conduct problems, in children with autism spectrum disorder. Parents who had attended the training also reported reduced parental stress level after treatment. The findings supported the feasibility and promising effects of a brief parent-based sleep intervention delivered via telehealth for preschooler with autism spectrum disorder.

2.
Nat Genet ; 56(4): 579-584, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38575728

ABSTRACT

Obesity is a major risk factor for many common diseases and has a substantial heritable component. To identify new genetic determinants, we performed exome-sequence analyses for adult body mass index (BMI) in up to 587,027 individuals. We identified rare loss-of-function variants in two genes (BSN and APBA1) with effects substantially larger than those of well-established obesity genes such as MC4R. In contrast to most other obesity-related genes, rare variants in BSN and APBA1 were not associated with normal variation in childhood adiposity. Furthermore, BSN protein-truncating variants (PTVs) magnified the influence of common genetic variants associated with BMI, with a common variant polygenic score exhibiting an effect twice as large in BSN PTV carriers than in noncarriers. Finally, we explored the plasma proteomic signatures of BSN PTV carriers as well as the functional consequences of BSN deletion in human induced pluripotent stem cell-derived hypothalamic neurons. Collectively, our findings implicate degenerative processes in synaptic function in the etiology of adult-onset obesity.


Subject(s)
Diabetes Mellitus, Type 2 , Induced Pluripotent Stem Cells , Liver Diseases , Nerve Tissue Proteins , Adult , Humans , Adaptor Proteins, Signal Transducing/genetics , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Nerve Tissue Proteins/genetics , Obesity/complications , Obesity/genetics , Proteomics
3.
Sydney C Morgan; Stefan Aigner; Catelyn Anderson; Pedro Belda-Ferre; Peter De Hoff; Clarisse A Marotz; Shashank Sathe; Mark Zeller; Noorsher Ahmed; Xaver Audhya; Nathan A Baer; Tom Barber; Bethany Barrick; Lakshmi Batachari; Maryann Betty; Steven M Blue; Brent Brainard; Tyler Buckley; Jamie Case; Anelizze Castro-Martinez; Marisol Chacon; Willi Cheung; LaVonnye Chong; Nicole G Coufal; Evelyn S Crescini; Scott DeGrand; David P Dimmock; J Joelle Donofrio-Odmann; Emily R Eisner; Mehrbod Estaki; Lizbeth Franco Vargas; Michele Freddock; Robert M Gallant; Andrea Galmozzi; Nina J Gao; Sheldon Gilmer; Edyta M Grzelak; Abbas Hakim; Jonathan Hart; Charlotte Hobbs; Greg Humphrey; Nadja Ilkenhans; Marni Jacobs; Christopher A Kahn; Bhavika K Kapadia; Matthew Kim; Sunil Kurian; Alma L Lastrella; Elijah S Lawrence; Kari Lee; Qishan Liang; Hanna Liliom; Valentina Lo Sardo; Robert Logan; Michal Machnicki; Celestine G Magallanes; Clarence K Mah; Denise Malacki; Ryan J Marina; Christopher Marsh; Natasha K Martin; Nathaniel L Matteson; Daniel J Maunder; Kyle McBride; Bryan McDonald; Daniel McDonald; Michelle McGraw; Audra R Meadows; Michelle Meyer; Amber L Morey; Jasmine R Mueller; Toan T Ngo; Julie Nguyen; Viet Nguyen; Laura J Nicholson; Alhakam Nouri; Victoria Nudell; Eugenio Nunez; Kyle O'Neill; R Tyler Ostrander; Priyadarshini Pantham; Samuel S Park; David Picone; Ashley Plascencia; Isaraphorn Pratumchai; Michael Quigley; Michelle Franc Ragsac; Andrew C Richardson; Refugio Robles-Sikisaka; Christopher A Ruiz; Justin Ryan; Lisa Sacco; Sharada Saraf; Phoebe Seaver; Leigh Sewall; Elizabeth W Smoot; Kathleen M Sweeney; Chandana Tekkatte; Rebecca Tsai; Holly Valentine; Shawn Walsh; August Williams; Min Yi Wu; Bing Xia; Brian Yee; Jason Z Zhang; Kristian G Andersen; Lauge Farnaes; Rob Knight; Gene W Yeo; Louise C Laurent.
Preprint in English | medRxiv | ID: ppmedrxiv-21257885

ABSTRACT

BackgroundSuccessful containment strategies for SARS-CoV-2, the causative virus of the COVID-19 pandemic, have involved widespread population testing that identifies infections early and enables rapid contact tracing. In this study, we developed a rapid and inexpensive RT- qPCR testing pipeline for population-level SARS-CoV-2 detection, and used this pipeline to establish a clinical laboratory dedicated to COVID-19 testing at the University of California San Diego (UCSD) with a processing capacity of 6,000 samples per day and next-day result turnaround times. Methods and findingsUsing this pipeline, we screened 6,786 healthcare workers and first responders, and 21,220 students, faculty, and staff from UCSD. Additionally, we screened 6,031 preschool-grade 12 students and staff from public and private schools across San Diego County that remained fully or partially open for in-person teaching during the pandemic. Between April 17, 2020 and February 5, 2021, participants provided 161,582 nasal swabs that were tested for the presence of SARS-CoV-2. Overall, 752 positive tests were obtained, yielding a test positivity rate of 0.47%. While the presence of symptoms was significantly correlated with higher viral load, most of the COVID-19 positive participants who participated in symptom surveys were asymptomatic at the time of testing. The positivity rate among preschool-grade 12 schools that remained open for in-person teaching was similar to the positivity rate at UCSD and lower than that of San Diego County, with the children in private schools being less likely to test positive than the adults at these schools. ConclusionsMost schools across the United States have been closed for in-person learning for much of the 2020-2021 school year, and their safe reopening is a national priority. However, as there are no vaccines against SARS-CoV-2 currently available to the majority of school-aged children, the traditional strategies of mandatory masking, physical distancing, and repeated viral testing of students and staff remain key components of risk mitigation in these settings. The data presented here suggest that the safety measures and repeated testing actions taken by participating healthcare and educational facilities were effective in preventing outbreaks, and that a similar combination of risk-mitigation strategies and repeated testing may be successfully adopted by other healthcare and educational systems.

4.
BioData Min ; 10: 28, 2017.
Article in English | MEDLINE | ID: mdl-28785314

ABSTRACT

BACKGROUND: BarraCUDA is an open source C program which uses the BWA algorithm in parallel with nVidia CUDA to align short next generation DNA sequences against a reference genome. Recently its source code was optimised using "Genetic Improvement". RESULTS: The genetically improved (GI) code is up to three times faster on short paired end reads from The 1000 Genomes Project and 60% more accurate on a short BioPlanet.com GCAT alignment benchmark. GPGPU BarraCUDA running on a single K80 Tesla GPU can align short paired end nextGen sequences up to ten times faster than bwa on a 12 core server. CONCLUSIONS: The speed up was such that the GI version was adopted and has been regularly downloaded from SourceForge for more than 12 months.

5.
Endocrinology ; 156(11): 3924-36, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26241122

ABSTRACT

The stomach epithelium contains a myriad of enteroendocrine cells that modulate a range of physiological functions, including postprandial secretion of regulatory peptides, gastric motility, and nutrient absorption. Somatostatin (SST)-producing D-cells are present in the oxyntic and pyloric regions of the stomach, and provide a tonic inhibitory tone that regulates activity of neighboring enteroendocrine cells and gastric acid secretion. Cellular mechanisms underlying the effects of regulatory factors on gastric D-cells are poorly defined due to problems in identifying primary D-cells, and uncertainty remains about which stimuli influence D-cells directly. In this study, we introduce a transgenic mouse line, SST-Cre, which upon crossing with Cre reporter strains, facilitates the identification and purification of gastric D-cells, or cell-specific expression of genetically encoded calcium indicators. Populations of D-cells from the gastric antrum and corpus were isolated and analyzed by RNA sequencing and quantitative RT-PCR. The expression of hormones, hormone receptors, neurotransmitter receptors, and nutrient receptors was quantified. Pyy, Gipr, Chrm4, Calcrl, Taar1, and Casr were identified as genes that are highly enriched in D-cells compared with SST-negative cells. Hormone secretion assays performed in mixed gastric epithelial cultures confirmed that SST secretion is regulated by incretin hormones, cholecystokinin, acetylcholine, vasoactive intestinal polypeptide, calcitonin gene-related polypeptide, oligopetides, and trace amines. Cholecystokinin and oligopeptides elicited increases in intracellular calcium in single-cell imaging experiments performed using cultured D-cells. Our data provide the first transcriptomic analysis and functional characterization of gastric D-cells, and identify regulatory pathways that underlie the direct detection of stimuli by this cell type.


Subject(s)
Epithelial Cells/metabolism , Gastric Mucosa/metabolism , Somatostatin-Secreting Cells/metabolism , Somatostatin/genetics , Transcriptome , Animals , Calcium/metabolism , Cells, Cultured , Female , Gastric Mucosa/cytology , Hormones/genetics , Hormones/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mice, Inbred NOD , Mice, Transgenic , Microscopy, Fluorescence , Receptors, Cell Surface/classification , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, G-Protein-Coupled/classification , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Somatostatin/metabolism , Stomach/cytology
6.
J Neurochem ; 112(4): 1065-73, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19968756

ABSTRACT

Expression of the nuclear orphan receptor gene Nur77 in neuronal cells is induced by activity-dependent increases in intracellular Ca2+ ions. Ca2+ responsiveness of the Nur77 gene has been attributed to two distinct DNA regulatory regions that recruit the transcription factors cAMP response element binding protein (CREB) and myocyte enhancer factor-2 (MEF2). Here we used dominant interfering and constitutively active mutants of CREB and MEF2 proteins to assess their relative contribution to depolarization-induced Nur77 expression in undifferentiated PC12 cells and hippocampal neurons. We show that while CREB is necessary for Ca2+-activated Nur77 expression MEF2 functions to modulate CREB-dependent Nur77 expression by acting as a repressor in quiescent cells.


Subject(s)
Gene Expression Regulation/physiology , Myogenic Regulatory Factors/metabolism , Neurons/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Animals , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Calcium/metabolism , Cells, Cultured , Cyclosporine/pharmacology , Enzyme Inhibitors , Gene Expression Regulation/drug effects , Green Fluorescent Proteins/genetics , Hippocampus/cytology , Humans , MEF2 Transcription Factors , Mice , Mutation/physiology , Myogenic Regulatory Factors/genetics , NFATC Transcription Factors/metabolism , Neurons/drug effects , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , PC12 Cells/drug effects , PC12 Cells/metabolism , Potassium Chloride/pharmacology , Promoter Regions, Genetic/genetics , Rats , Time Factors , Transfection/methods
7.
J Biol Chem ; 284(18): 12562-71, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19270309

ABSTRACT

In the mammalian hippocampus, changes in the expression of immediate early genes (IEGs) is thought to contribute to long term plastic changes in neurons brought about by learning tasks and high frequency stimulation of synapses. The phosphatase calcineurin has emerged as an important negative regulator of hippocampus-dependent learning and long term potentiation. Here we investigated the possibility that the constraining action of calcineurin on hippocampal plasticity is mediated in part by regulation of gene expression through negative control of transcription factors, such as cAMP-response element (CRE)-binding protein (CREB). We assessed the effect of calcineurin inhibitors on CREB activation by neuronal activity and show that calcineurin activity is in fact required for CREB-mediated gene expression. However, inhibition of calcineurin had disparate effects on the transcriptional induction of CREB-dependent IEGs. We find that the IEG c-fos is unaffected by suppression of calcineurin activity, the plasticity-related genes Egr1/Zif268 and Egr2/Krox-20 are up-regulated, and genes encoding the orphan nuclear hormone receptors Nor1 and Nur77 are down-regulated. We further show that the up-regulation of particular IEGs is probably due to the presence of serum response elements (SREs) in their promoters, because SRE-mediated gene expression is enhanced by calcineurin blockers. Moreover, expression of the c-fos gene, which is unaffected by calcineurin inhibitors, could be down-regulated by mutating the SRE. Conversely, SRE-mediated c-fos induction in the absence of a functional CRE was enhanced by calcineurin inhibitors. Our experiments thus implicate calcineurin as a negative regulator of SRE-dependent neuronal genes.


Subject(s)
Calcineurin/metabolism , Gene Expression Regulation/physiology , Hippocampus/metabolism , Nerve Tissue Proteins/biosynthesis , Neuronal Plasticity/physiology , Neurons/metabolism , Animals , CREB-Binding Protein/metabolism , Calcineurin Inhibitors , Cells, Cultured , DNA-Binding Proteins/biosynthesis , Early Growth Response Protein 1/biosynthesis , Early Growth Response Protein 2/biosynthesis , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Hippocampus/cytology , Neuronal Plasticity/drug effects , Neurons/cytology , Nuclear Receptor Subfamily 4, Group A, Member 1 , Proto-Oncogene Proteins c-fyn/biosynthesis , Rats , Rats, Wistar , Receptors, Steroid/biosynthesis , Serum Response Element/physiology , Transcription, Genetic/physiology
8.
Neurosci Lett ; 427(3): 153-8, 2007 Nov 12.
Article in English | MEDLINE | ID: mdl-17945419

ABSTRACT

The myocyte enhancer factor-2 (MEF2) family of Ca(2+) -regulated transcription factors regulate neuronal development by controlling synapse formation and supporting the survival of newly formed neurons. MEF2 proteins could potentially also influence early aspects of neuronal differentiation such as neuronal fate specification and their subsequent morphological and functional maturation. We used immunocytochemistry to examine the expression of the isoform MEF2D during the differentiation of embryonic rat neural progenitor cells as a step towards evaluating the role of MEF2 factors in early events of neuronal differentiation. We show here that MEF2D is expressed in both proliferating neural precursor cells and in differentiated cells that acquire neuronal or glial phenotypes. However, in cells that adopt a neuronal phenotype, MEF2D expression in the nucleus increases progressively during the course of differentiation while decreasing in glial cells. Furthermore, in newly formed neurons the level of MEF2D expression correlates positively with the length of neurite projections.


Subject(s)
Cell Differentiation/physiology , Embryonic Stem Cells/physiology , Gene Expression Regulation, Developmental/physiology , Myogenic Regulatory Factors/metabolism , Neurites/physiology , Neurons/cytology , Animals , Cell Proliferation , Cells, Cultured , Embryo, Mammalian , Myogenic Regulatory Factors/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Rats , Rats, Wistar , Regression Analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...