Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-512927

ABSTRACT

A series of SARS-CoV-2 variants of concern (VOCs) have evolved in humans during the COVID-19 pandemic--Alpha, Beta, Gamma, Delta, and Omicron. Here, we used global proteomic and genomic analyses during infection to understand the molecular responses driving VOC evolution. We discovered VOC-specific differences in viral RNA and protein expression levels, including for N, Orf6, and Orf9b, and pinpointed several viral mutations responsible. An analysis of the host response to VOC infection and comprehensive interrogation of altered virus-host protein-protein interactions revealed conserved and divergent regulation of biological pathways. For example, regulation of host translation was highly conserved, consistent with suppression of VOC replication in mice using the translation inhibitor plitidepsin. Conversely, modulation of the host inflammatory response was most divergent, where we found Alpha and Beta, but not Omicron BA.1, antagonized interferon stimulated genes (ISGs), a phenotype that correlated with differing levels of Orf6. Additionally, Delta more strongly upregulated proinflammatory genes compared to other VOCs. Systematic comparison of Omicron subvariants revealed BA.5 to have evolved enhanced ISG and proinflammatory gene suppression that similarly correlated with Orf6 expression, effects not seen in BA.4 due to a mutation that disrupts the Orf6-nuclear pore interaction. Our findings describe how VOCs have evolved to fine-tune viral protein expression and protein-protein interactions to evade both innate and adaptive immune responses, offering a likely explanation for increased transmission in humans. One sentence summarySystematic proteomic and genomic analyses of SARS-CoV-2 variants of concern reveal how variant-specific mutations alter viral gene expression, virus-host protein complexes, and the host response to infection with applications to therapy and future pandemic preparedness.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-476685

ABSTRACT

Variants of SARS-CoV-2 have become a major public health concern due to increased transmissibility, and escape from natural immunity, vaccine protection, and monoclonal antibody therapeutics. The highly transmissible Omicron variant has up to 32 mutations within the spike protein, many more than previous variants, heightening these concerns of immune escape. There are now multiple antiviral therapeutics that have received approval for emergency use by the FDA and target both the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) and the main protease (Mpro), which have accumulated fewer mutations in known SARS-CoV-2 variants. Here we test nirmatrelvir (PF-07321332), and other clinically relevant SARS-CoV-2 antivirals, against a panel of SARS-CoV-2 variants, including the novel Omicron variant, in live-virus antiviral assays. We confirm that nirmatrelvir and other clinically relevant antivirals all maintain activity against all variants tested, including Omicron.

3.
- The COVID Moonshot Initiative; Hagit Achdout; Anthony Aimon; Elad Bar-David; Haim Barr; Amir Ben-Shmuel; James Bennett; Vitaliy A. Bilenko; Vitaliy A. Bilenko; Melissa L. Boby; Bruce Borden; Gregory R. Bowman; Juliane Brun; Sarma BVNBS; Mark Calmiano; Anna Carbery; Daniel Carney; Emma Cattermole; Edcon Chang; Eugene Chernyshenko; John D. Chodera; Austin Clyde; Joseph E. Coffland; Galit Cohen; Jason Cole; Alessandro Contini; Lisa Cox; Milan Cvitkovic; Alex Dias; Kim Donckers; David L. Dotson; Alice Douangamath; Shirly Duberstein; Tim Dudgeon; Louise Dunnett; Peter K. Eastman; Noam Erez; Charles J. Eyermann; Mike Fairhead; Gwen Fate; Daren Fearon; Oleg Fedorov; Matteo Ferla; Rafaela S. Fernandes; Lori Ferrins; Richard Foster; Holly Foster; Ronen Gabizon; Adolfo Garcia-Sastre; Victor O. Gawriljuk; Paul Gehrtz; Carina Gileadi; Charline Giroud; William G. Glass; Robert Glen; Itai Glinert; Andre S. Godoy; Marian Gorichko; Tyler Gorrie-Stone; Ed J. Griffen; Storm Hassell Hart; Jag Heer; Michael Henry; Michelle Hill; Sam Horrell; Victor D. Huliak; Matthew F.D. Hurley; Tomer Israely; Andrew Jajack; Jitske Jansen; Eric Jnoff; Dirk Jochmans; Tobias John; Steven De Jonghe; Anastassia L. Kantsadi; Peter W. Kenny; J. L. Kiappes; Serhii O. Kinakh; Lizbe Koekemoer; Boris Kovar; Tobias Krojer; Alpha Lee; Bruce A. Lefker; Haim Levy; Ivan G. Logvinenko; Nir London; Petra Lukacik; Hannah Bruce Macdonald; Beth MacLean; Tika R. Malla; Tatiana Matviiuk; Willam McCorkindale; Briana L. McGovern; Sharon Melamed; Kostiantyn P. Melnykov; Oleg Michurin; Halina Mikolajek; Bruce F. Milne; Aaron Morris; Garrett M. Morris; Melody Jane Morwitzer; Demetri Moustakas; Aline M. Nakamura; Jose Brandao Neto; Johan Neyts; Luong Nguyen; Gabriela D. Noske; Vladas Oleinikovas; Glaucius Oliva; Gijs J. Overheul; David Owen; Ruby Pai; Jin Pan; Nir Paran; Benjamin Perry; Maneesh Pingle; Jakir Pinjari; Boaz Politi; Ailsa Powell; Vladimir Psenak; Reut Puni; Victor L. Rangel; Rambabu N. Reddi; St Patrick Reid; Efrat Resnick; Emily Grace Ripka; Matthew C. Robinson; Ralph P. Robinson; Jaime Rodriguez-Guerra; Romel Rosales; Dominic Rufa; Kadi Saar; Kumar Singh Saikatendu; Chris Schofield; Mikhail Shafeev; Aarif Shaikh; Jiye Shi; Khriesto Shurrush; Sukrit Singh; Assa Sittner; Rachael Skyner; Adam Smalley; Bart Smeets; Mihaela D. Smilova; Leonardo J. Solmesky; John Spencer; Claire Strain-Damerell; Vishwanath Swamy; Hadas Tamir; Rachael Tennant; Warren Thompson; Andrew Thompson; Susana Tomasio; Igor S. Tsurupa; Anthony Tumber; Ioannis Vakonakis; Ronald P. van Rij; Laura Vangeel; Finny S. Varghese; Mariana Vaschetto; Einat B. Vitner; Vincent Voelz; Andrea Volkamer; Frank von Delft; Annette von Delft; Martin Walsh; Walter Ward; Charlie Weatherall; Shay Weiss; Kris M. White; Conor Francis Wild; Matthew Wittmann; Nathan Wright; Yfat Yahalom-Ronen; Daniel Zaidmann; Hadeer Zidane; Nicole Zitzmann.
Preprint in English | bioRxiv | ID: ppbiorxiv-339317

ABSTRACT

The COVID-19 pandemic is a stark reminder that a barren global antiviral pipeline has grave humanitarian consequences. Future pandemics could be prevented by accessible, easily deployable broad-spectrum oral antivirals and open knowledge bases that derisk and accelerate novel antiviral discovery and development. Here, we report the results of the COVID Moonshot, a fully open-science structure-enabled drug discovery campaign targeting the SARS-CoV-2 main protease. We discovered a novel chemical scaffold that is differentiated from current clinical candidates in terms of toxicity, resistance, and pharmacokinetics liabilities, and developed it into noncovalent orally-bioavailable nanomolar inhibitors with clinical potential. Our approach leveraged crowdsourcing, high-throughput structural biology, machine learning, and exascale molecular simulations. In the process, we generated a detailed map of the structural plasticity of the main protease, extensive structure-activity relationships for multiple chemotypes, and a wealth of biochemical activity data. In a first for a structure-based drug discovery campaign, all compound designs (>18,000 designs), crystallographic data (>500 ligand-bound X-ray structures), assay data (>10,000 measurements), and synthesized molecules (>2,400 compounds) for this campaign were shared rapidly and openly, creating a rich open and IP-free knowledgebase for future anti-coronavirus drug discovery.

SELECTION OF CITATIONS
SEARCH DETAIL
...