Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21257459

ABSTRACT

We evaluated post-vaccination immunity after COVID-19 vaccination with serial changes in cellular and antibody responses to the spike protein S, its S2 component which is conserved between SARS-CoV-2 and human coronaviruses, and the S1 component, which is specific to SARS-CoV-2 and also contains its receptor binding domain (RBD). In 21 healthy immunocompetent subjects all of whom demonstrated circulating IgG antibodies 4 months after mRNA1273 or BNT162b vaccination, a) the strength of S-IgG was stable while RBD-IgG declined, b) S2-reactive B-cell frequencies increased progressively (p=0.002) c) S1-reactive CD8+T-cells and CD19+B-cells were undetectable after a transient increase, and d) monocytic and polymorphonuclear myeloid-derived suppressor cells (M-MDSC, PMN-MDSC) increased after the first vaccine dose. Compared with 4-month measurements from immunocompetent subjects, single samples from 20 vaccinated immunocompromised (IC) subjects revealed a) circulating S-IgG and RBD-IgG in 13 (65%) and 9 (45%) subjects, respectively, b) no differences in S2-reactive T- and B-cells, c) undetectable S1-reactive T- and B-cells, and d) fewer S-reactive CD8+T-cells and CD19+B-cells (p<0.05). Among 11 IC recipients who failed to make RBD-IgG, frequencies of PMN-MDSC were significantly higher (p<0.0004) compared with IC or immunocompetent subjects with RBD-IgG. COVID-19 vaccination induces stable antibodies to the spike protein and expands circulating B-cells reactive to the conserved spike protein sequence in immunocompetent subjects. MDSC which are known to suppress T- and B-cells, and which increase after vaccination, may limit post-vaccination responses especially among immunocompromised subjects. Antibody and cellular responses to SARS-CoV-2-specific spike antigenic sequences appear to be less durable.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21257442

ABSTRACT

BackgroundIn recent studies, up to half of immunocompromised (IC) subject populations fail to develop antibodies after COVID-19 vaccination. Purpose and MethodsHere, we explore whether T-cells which respond to the spike (S) antigenic sequence and its less conserved S1, and the conserved S2 component are present in serial samples before and after each dose of mRNA1273 or BNT162b2 vaccines in 20 healthy immunocompetent subjects. Single samples from 7 vaccinated IC subjects were also tested. Simultaneously, we measured IgG antibodies to the receptor binding domain (RBD) of S1, and anti-S IgG, and frequencies of monocytic CD14+HLA-DR-(M-MDSC) and polymorphonuclear CD14-CD15+CD11b+ (PMN-MDSC) myeloid-derived suppressor cells. ResultsIn healthy subjects, S1-, S2-, and S-reactive CD4 and CD8 T-cell frequencies showed a numeric but not statistically significant decrease after the first vaccine dose and were accompanied by increased MDSC frequencies (p<0.05). After the second dose, S2-and S-reactive CD4 and CD8 cells and MDSC approached pre-vaccination levels. In healthy subjects, a) S1-reactive CD8 frequencies were significantly higher after the second dose compared with pre-vaccination levels (p=0.015), b) anti-RBD and anti-S IgG were present in all after the second dose. Among seven IC subjects, anti-RBD and anti-S IgG were absent in 4 and 3 subjects, respectively. S1-reactive CD8 cells were identified in 2 of 4 anti-RBD negative subjects. S-reactive CD4 or CD8 cells were identified in all three anti-S negative subjects. ConclusionsIn healthy immunocompetent subjects, mRNA vaccines induce antibodies to the spike antigenic sequences and augment CD8 cells reactive to the S1 spike sequence, which is more specific for the SARS-CoV-2 virus. In this exploratory cohort of vaccinated immunocompromised subjects, S1-reactive CD8 cells can be detected in some who are negative for RBD antibody, and S-reactive T-cells are present in all who are negative for spike antibody.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-442371

ABSTRACT

Assessment of T-cell immunity to the COVID-19 coronavirus requires reliable assays and is of great interest, given the uncertain longevity of the antibody response. Some recent reports have used immunodominant spike (S) antigenic peptides and anti-CD28 co-stimulation in varying combinations to assess T-cell immunity to SARS-CoV-2. These assays may cause T-cell hyperstimulation and could overestimate antiviral immunity in chronically immunosuppressed transplant recipients, who are predisposed to infections and vaccination failures. Here, we evaluate CD154-expressing T-cells induced by unselected S antigenic peptides in 204 subjects-103 COVID-19 patients and 101 healthy unexposed subjects. Subjects included 72 transplanted and 130 non-transplanted subjects. S-reactive CD154+T-cells co-express and can thus substitute for IFN{gamma} (n=3). Assay reproducibility in a variety of conditions was acceptable with coefficient of variation of 2-10.6%. S-reactive CD154+T-cell frequencies were a) higher in 42 healthy unexposed transplant recipients who were sampled pre-pandemic, compared with 59 healthy non-transplanted subjects (p=0.02), b) lower in Tr COVID-19 patients compared with healthy transplant patients (p<0.0001), c) lower in Tr patients with severe COVID-19 (p<0.0001), or COVID-19 requiring hospitalization (p<0.05), compared with healthy Tr recipients. S-reactive T-cells were not significantly different between the various COVID-19 disease categories in NT recipients. Among transplant recipients with COVID-19, cytomegalovirus co-infection occurred in 34%; further, CMV-specific T-cells (p<0.001) and incidence of anti-receptor-binding-domain IgG (p=0.011) were lower compared with non-transplanted COVID-19 patients. Healthy unexposed transplant recipients exhibit pre-existing T-cell immunity to SARS-CoV-2. COVID-19 infection leads to impaired T-cell and antibody responses to SARS-CoV-2 and increased risk of CMV co-infection in transplant recipients.

SELECTION OF CITATIONS
SEARCH DETAIL
...