Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Alliance ; 7(1)2024 01.
Article in English | MEDLINE | ID: mdl-37923360

ABSTRACT

To identify functional differences between vertebrate clathrin light chains (CLCa or CLCb), phenotypes of mice lacking genes encoding either isoform were characterised. Mice without CLCa displayed 50% neonatal mortality, reduced body weight, reduced fertility, and ∼40% of aged females developed uterine pyometra. Mice lacking CLCb displayed a less severe weight reduction phenotype compared with those lacking CLCa and had no survival or reproductive system defects. Analysis of female mice lacking CLCa that developed pyometra revealed ectopic expression of epithelial differentiation markers (FOXA2 and K14) and a reduced number of endometrial glands, indicating defects in the lumenal epithelium. Defects in lumen formation and polarity of epithelial cysts derived from uterine or gut cell lines were also observed when either CLCa or CLCb were depleted, with more severe effects from CLCa depletion. In cysts, the CLC isoforms had different distributions relative to each other, although they converge in tissue. Together, these findings suggest differential and cooperative roles for CLC isoforms in epithelial lumen formation, with a dominant function for CLCa.


Subject(s)
Cysts , Pyometra , Humans , Female , Animals , Mice , Clathrin Light Chains/genetics , Clathrin Light Chains/metabolism , Cell Line , Protein Isoforms
2.
Proc Natl Acad Sci U S A ; 117(38): 23527-23538, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32907943

ABSTRACT

Clathrin light chain (CLC) subunits in vertebrates are encoded by paralogous genes CLTA and CLTB, and both gene products are alternatively spliced in neurons. To understand how this CLC diversity influences neuronal clathrin function, we characterized the biophysical properties of clathrin comprising individual CLC variants for correlation with neuronal phenotypes of mice lacking either CLC-encoding gene. CLC splice variants differentially influenced clathrin knee conformation within assemblies, and clathrin with neuronal CLC mixtures was more effective in membrane deformation than clathrin with single neuronal isoforms nCLCa or nCLCb. Correspondingly, electrophysiological recordings revealed that neurons from mice lacking nCLCa or nCLCb were both defective in synaptic vesicle replenishment. Mice with only nCLCb had a reduced synaptic vesicle pool and impaired neurotransmission compared to WT mice, while nCLCa-only mice had increased synaptic vesicle numbers, restoring normal neurotransmission. These findings highlight differences between the CLC isoforms and show that isoform mixing influences tissue-specific clathrin activity in neurons, which requires their functional balance.


Subject(s)
Clathrin Light Chains , Synaptic Vesicles/chemistry , Synaptic Vesicles/metabolism , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/metabolism , Cells, Cultured , Clathrin Light Chains/chemistry , Clathrin Light Chains/genetics , Clathrin Light Chains/metabolism , Mice , Mice, Knockout , Neurons/cytology , Neurons/metabolism , Protein Isoforms/chemistry , Protein Isoforms/metabolism
3.
Curr Opin Cell Biol ; 65: 141-149, 2020 08.
Article in English | MEDLINE | ID: mdl-32836101

ABSTRACT

Understanding of the range and mechanisms of clathrin functions has developed exponentially since clathrin's discovery in 1975. Here, newly established molecular mechanisms that regulate clathrin activity and connect clathrin pathways to differentiation, disease and physiological processes such as glucose metabolism are reviewed. Diversity and commonalities of clathrin pathways across the tree of life reveal species-specific differences enabling functional plasticity in both membrane traffic and cytokinesis. New structural information on clathrin coat formation and cargo interactions emphasises the interplay between clathrin, adaptor proteins, lipids and cargo, and how this interplay regulates quality control of clathrin's function and is compromised in infection and neurological disease. Roles for balancing clathrin-mediated cargo transport are defined in stem cell development and additional disease states.


Subject(s)
Clathrin/metabolism , Disease , Animals , Biological Transport , Clathrin/chemistry , Humans , Models, Biological , Organ Specificity , Phylogeny
4.
J Biol Chem ; 292(51): 20834-20844, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29097553

ABSTRACT

Clathrins are cytoplasmic proteins that play essential roles in endocytosis and other membrane traffic pathways. Upon recruitment to intracellular membranes, the canonical clathrin triskelion assembles into a polyhedral protein coat that facilitates vesicle formation and captures cargo molecules for transport. The triskelion is formed by trimerization of three clathrin heavy-chain subunits. Most vertebrates have two isoforms of clathrin heavy chains, CHC17 and CHC22, generating two clathrins with distinct cellular functions. CHC17 forms vesicles at the plasma membrane for receptor-mediated endocytosis and at the trans-Golgi network for organelle biogenesis. CHC22 plays a key role in intracellular targeting of the insulin-regulated glucose transporter 4 (GLUT4), accumulates at the site of GLUT4 sequestration during insulin resistance, and has also been implicated in neuronal development. Here, we demonstrate that CHC22 and CHC17 share morphological features, in that CHC22 forms a triskelion and latticed vesicle coats. However, cellular CHC22-coated vesicles were distinct from those formed by CHC17. The CHC22 coat was more stable to pH change and was not removed by the enzyme complex that disassembles the CHC17 coat. Moreover, the two clathrins were differentially recruited to membranes by adaptors, and CHC22 did not support vesicle formation or transferrin endocytosis at the plasma membrane in the presence or absence of CHC17. Our findings provide biochemical evidence for separate regulation and distinct functional niches for CHC17 and CHC22 in human cells. Furthermore, the greater stability of the CHC22 coat relative to the CHC17 coat may be relevant to its excessive accumulation with GLUT4 during insulin resistance.


Subject(s)
Clathrin Heavy Chains/chemistry , Clathrin Heavy Chains/metabolism , Amino Acid Sequence , Clathrin Heavy Chains/genetics , Clathrin-Coated Vesicles/metabolism , Clathrin-Coated Vesicles/ultrastructure , Endocytosis , Glucose Transporter Type 4/metabolism , HeLa Cells , Humans , Insulin Resistance , RNA, Small Interfering/genetics , Sequence Homology, Amino Acid , Transferrin/metabolism
5.
PLoS One ; 12(4): e0173924, 2017.
Article in English | MEDLINE | ID: mdl-28384259

ABSTRACT

Multiple protein quality control systems operate to ensure that misfolded proteins are efficiently cleared from the cell. While quality control systems that assess the folding status of soluble domains have been extensively studied, transmembrane domain (TMD) quality control mechanisms are poorly understood. Here, we have used chimeras based on the type I plasma membrane protein CD8 in which the endogenous TMD was substituted with transmembrane sequences derived from different polytopic membrane proteins as a mode to investigate the quality control of unassembled TMDs along the secretory pathway. We find that the three TMDs examined prevent trafficking of CD8 to the cell surface via potentially distinct mechanisms. CD8 containing two distinct non-native transmembrane sequences escape the ER and are subsequently retrieved from the Golgi, possibly via Rer1, leading to ER localisation at steady state. A third chimera, containing an altered transmembrane domain, was predominantly localised to the Golgi at steady state, indicating the existence of an additional quality control checkpoint that identifies non-native transmembrane domains that have escaped ER retention and retrieval. Preliminary experiments indicate that protein retained by quality control mechanisms at the Golgi are targeted to lysosomes for degradation.


Subject(s)
Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Quality Control , Animals
6.
Dis Model Mech ; 9(11): 1317-1328, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27519691

ABSTRACT

Autosomal recessive bestrophinopathy (ARB) is a retinopathy caused by mutations in the bestrophin-1 protein, which is thought to function as a Ca2+-gated Cl- channel in the basolateral surface of the retinal pigment epithelium (RPE). Using a stably transfected polarised epithelial cell model, we show that four ARB mutant bestrophin-1 proteins were mislocalised and subjected to proteasomal degradation. In contrast to the wild-type bestrophin-1, each of the four mutant proteins also failed to conduct Cl- ions in transiently transfected cells as determined by whole-cell patch clamp. We demonstrate that a combination of two clinically approved drugs, bortezomib and 4-phenylbutyrate (4PBA), successfully restored the expression and localisation of all four ARB mutant bestrophin-1 proteins. Importantly, the Cl- conductance function of each of the mutant bestrophin-1 proteins was fully restored to that of wild-type bestrophin-1 by treatment of cells with 4PBA alone. The functional rescue achieved with 4PBA is significant because it suggests that this drug, which is already approved for long-term use in infants and adults, might represent a promising therapy for the treatment of ARB and other bestrophinopathies resulting from missense mutations in BEST1.


Subject(s)
Bestrophins/genetics , Bestrophins/metabolism , Cell Polarity , Epithelial Cells/metabolism , Epithelial Cells/pathology , Mutant Proteins/metabolism , Animals , Biotinylation , Cell Polarity/drug effects , Dogs , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Epithelial Cells/drug effects , Eye Diseases, Hereditary/genetics , Eye Diseases, Hereditary/pathology , HEK293 Cells , Humans , Madin Darby Canine Kidney Cells , Models, Biological , Mutation/genetics , Patch-Clamp Techniques , Phenylbutyrates/pharmacology , Protein Transport/drug effects , Retinal Diseases/genetics , Retinal Diseases/pathology , Small Molecule Libraries/pharmacology , Transfection
7.
J Cell Sci ; 128(22): 4112-25, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26446255

ABSTRACT

Clearance of misfolded proteins from the endoplasmic reticulum (ER) is mediated by the ubiquitin-proteasome system in a process known as ER-associated degradation (ERAD). The mechanisms through which proteins containing aberrant transmembrane domains are degraded by ERAD are poorly understood. To address this question, we generated model ERAD substrates based on CD8 with either a non-native transmembrane domain but a folded ER luminal domain (CD8(TMD*)), or the native transmembrane domain but a misfolded luminal domain (CD8(LUM*)). Although both chimeras were degraded by ERAD, we found that the location of the folding defect determined the initial site of ubiquitylation. Ubiquitylation of cytoplasmic lysine residues was required for the extraction of CD8(TMD*) from the ER membrane during ERAD, whereas CD8(LUM*) continued to be degraded in the absence of cytoplasmic lysine residues. Cytoplasmic lysine residues were also required for degradation of an additional ERAD substrate containing an unassembled transmembrane domain and when a non-native transmembrane domain was introduced into CD8(LUM*). Our results suggest that proteins with defective transmembrane domains are removed from the ER through a specific ERAD mechanism that depends upon ubiquitylation of cytoplasmic lysine residues.


Subject(s)
Endoplasmic Reticulum-Associated Degradation/physiology , Lysine/metabolism , Membrane Proteins/metabolism , Amino Acid Sequence , CD8 Antigens/metabolism , HeLa Cells , Humans , Molecular Sequence Data , Protein Folding , Protein Structure, Tertiary , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...