Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 14(8): e1007158, 2018 08.
Article in English | MEDLINE | ID: mdl-30089163

ABSTRACT

Human papillomavirus type 16 (HPV16) and other oncoviruses have been shown to block innate immune responses and to persist in the host. However, to avoid viral persistence, the immune response attempts to clear the infection. IL-1ß is a powerful cytokine produced when viral motifs are sensed by innate receptors that are members of the inflammasome family. Whether oncoviruses such as HPV16 can activate the inflammasome pathway remains unknown. Here, we show that infection of human keratinocytes with HPV16 induced the secretion of IL-1ß. Yet, upon expression of the viral early genes, IL-1ß transcription was blocked. We went on to show that expression of the viral oncoprotein E6 in human keratinocytes inhibited IRF6 transcription which we revealed regulated IL-1ß promoter activity. Preventing E6 expression using siRNA, or using E6 mutants that prevented degradation of p53, showed that p53 regulated IRF6 transcription. HPV16 abrogation of p53 binding to the IRF6 promoter was shown by ChIP in tissues from patients with cervical cancer. Thus E6 inhibition of IRF6 is an escape strategy used by HPV16 to block the production IL-1ß. Our findings reveal a struggle between oncoviral persistence and host immunity; which is centered on IL-1ß regulation.


Subject(s)
Gene Expression Regulation/immunology , Immune Evasion/immunology , Interferon Regulatory Factors/metabolism , Interleukin-1beta/biosynthesis , Papillomavirus Infections/immunology , Human papillomavirus 16/immunology , Humans , Interferon Regulatory Factors/immunology , Interleukin-1beta/immunology , Keratinocytes/immunology , Keratinocytes/metabolism , Keratinocytes/virology , Oncogene Proteins, Viral/metabolism , Papillomavirus Infections/metabolism , Repressor Proteins/metabolism
2.
J Immunol ; 197(1): 356-67, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27226092

ABSTRACT

The liver is the largest gland in the human body and functions as an innate immune organ. Liver macrophages called Kupffer cells (KC) constitute the largest group of macrophages in the human body. Innate immune responses involving KC represent the first line of defense against pathogens in the liver. Human monocyte-derived macrophages have been used to characterize inflammasome responses that lead to the release of the proinflammatory cytokines IL-1ß and IL-18, but it has not yet been determined whether human KC contain functional inflammasomes. We show, to our knowledge for the first time, that KC express genes and proteins that make up several different inflammasome complexes. Moreover, activation of KC in response to the absent in melanoma 2 (AIM2) inflammasome led to the production of IL-1ß and IL-18, which activated IL-8 transcription and hepatic NK cell activity, respectively. Other inflammasome responses were also activated in response to selected bacteria and viruses. However, hepatitis B virus inhibited the AIM2 inflammasome by reducing the mRNA stability of IFN regulatory factor 7, which regulated AIM2 transcription. These data demonstrate the production of IL-1ß and IL-18 in KC, suggesting that KC contain functional inflammasomes that could be important players in the innate immune response following certain infections of the liver. We think our findings could potentially aid therapeutic approaches against chronic liver diseases that activate the inflammasome.


Subject(s)
Hepatitis B virus/immunology , Hepatitis B, Chronic/immunology , Inflammasomes/metabolism , Killer Cells, Natural/immunology , Kupffer Cells/physiology , Liver/immunology , Cells, Cultured , DNA-Binding Proteins/metabolism , Humans , Immunity, Innate , Interferon Regulatory Factor-7/metabolism , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Lymphocyte Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...