Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 85(5): 053305, 2014 May.
Article in English | MEDLINE | ID: mdl-24880362

ABSTRACT

A new decay station has been built for the ISAC facility at TRIUMF for the rapid and reliable characterization of radioactive ion beam (RIB) compositions and intensities with the capability of simultaneously collecting α, ß, and γ decay data from RIB with intensities between a few and ≈10(11) ions per second. It features user-friendly control, data acquisition, and analysis software. The analysis of individual decay time structures allows the unambiguous assignment of α and γ lines even with substantial isobaric contamination present. The capability for accurate half-life measurements is demonstrated with the example of (46)K. The coupling of the yield station to the laser ion source, TRILIS, allows the correlation of radiometric data with automated laser frequency scans. First results of in-source laser spectroscopy measurements on astatine are discussed.

2.
Rev Sci Instrum ; 85(3): 033309, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24689577

ABSTRACT

Modern experiments at isotope separator on-line (ISOL) facilities like ISAC at TRIUMF often depend critically on the purity of the delivered rare isotope beams. Therefore, highly selective ion sources are essential. This article presents the development and successful on-line operation of an ion guide laser ion source (IG-LIS) for the production of ion beams free of isobaric contamination. Thermionic ions from the hot ISOL target are suppressed by an electrostatic potential barrier, while neutral radio nuclides effusing out are resonantly ionized by laser radiation within a quadrupole ion guide behind this barrier. The IG-LIS was developed through detailed thermal and ion optics simulation studies and off-line tests with stable isotopes. In a first on-line run with a SiC target a suppression of surface-ionized Na contaminants in the ion beam of up to six orders of magnitude was demonstrated.

3.
Rev Sci Instrum ; 79(2 Pt 2): 02A908, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18315163

ABSTRACT

The ISAC facility at TRIUMF utilizes up to 100 microA from the 500 MeV H(-) cyclotron to produce the radioactive ion beam (RIB) using the isotopic separation on line method. The ISAC-I facility comprised the RIB production target stations, the mass separator, and the beam delivery to low energy area and to a room temperature linear accelerator composed of a four-rod radio frequency quadrupole and an interdigital H-type structure drift tube LINAC. ISAC-I linear accelerator can provide beam from A=3 to 30 amu with an energy range from 0.15 to 1.5 A MeV. Since the beginning of operations target development program has been to increase proton beam currents on targets. Now we routinely operate our target at 50-85 microA and recently we have operated our target at 100 microA. Other developments are in place to add other ion sources, laser, force electron beam induced are discharge and electron cyclotron resonance ion source to the actual surface ion source. The last two five year plans were mainly devoted to the construction of a heavy ion superconducting LINAC (ISAC-II) that will upgrade the mass and the energy range from 30 to 150 and from 1.5 to 6.5 A MeV, respectively. The intermediate stage E< or =4.2 A MeV is already completed and commissioned; three experiments using (11)Li, (9)Li, and (29)Na have been completed this summer.

SELECTION OF CITATIONS
SEARCH DETAIL
...