Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mol Genet ; 23(18): 4745-57, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24760765

ABSTRACT

While spinal muscular atrophy (SMA) is characterized by motor neuron degeneration, it is unclear whether and how much survival motor neuron (SMN) protein deficiency in muscle contributes to the pathophysiology of the disease. There is increasing evidence from patients and SMA model organisms that SMN deficiency causes intrinsic muscle defects. Here we investigated the role of SMN in muscle development using muscle cell lines and primary myoblasts. Formation of multinucleate myotubes by SMN-deficient muscle cells is inhibited at a stage preceding plasma membrane fusion. We found increased expression and reduced induction of key muscle development factors, such as MyoD and myogenin, with differentiation of SMN-deficient cells. In addition, SMN-deficient muscle cells had impaired cell migration and altered organization of focal adhesions and the actin cytoskeleton. Partially restoring SMN inhibited the premature expression of muscle differentiation markers, corrected the cytoskeletal abnormalities and improved myoblast fusion. These findings are consistent with a role for SMN in myotube formation through effects on muscle differentiation and cell motility.


Subject(s)
Focal Adhesions/metabolism , Muscle Development , Muscle Fibers, Skeletal/metabolism , Myogenin/genetics , Survival of Motor Neuron 1 Protein/metabolism , Animals , Cell Differentiation , Cell Line , Cell Movement , Gene Expression Regulation , Humans , Mice , Muscle Fibers, Skeletal/cytology , MyoD Protein/genetics , MyoD Protein/metabolism , Myogenin/metabolism , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , Survival of Motor Neuron 1 Protein/genetics
2.
Hum Mutat ; 34(10): 1357-60, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23857908

ABSTRACT

We report here the genetic basis for a form of progressive hereditary spastic paraplegia (SPG43) previously described in two Malian sisters. Exome sequencing revealed a homozygous missense variant (c.187G>C; p.Ala63Pro) in C19orf12, a gene recently implicated in neurodegeneration with brain iron accumulation (NBIA). The same mutation was subsequently also found in a Brazilian family with features of NBIA, and we identified another NBIA patient with a three-nucleotide deletion (c.197_199del; p.Gly66del). Haplotype analysis revealed that the p.Ala63Pro mutations have a common origin, but MRI scans showed no brain iron deposition in the Malian SPG43 subjects. Heterologous expression of these SPG43 and NBIA variants resulted in similar alterations in the subcellular distribution of C19orf12. The SPG43 and NBIA variants reported here as well as the most common C19orf12 missense mutation reported in NBIA patients are found within a highly conserved, extended hydrophobic domain in C19orf12, underscoring the functional importance of this domain.


Subject(s)
Mitochondrial Proteins/genetics , Mutation , Spastic Paraplegia, Hereditary/diagnosis , Spastic Paraplegia, Hereditary/genetics , Adolescent , Amino Acid Sequence , Brain/metabolism , Brain/pathology , Homozygote , Humans , Intracellular Space/metabolism , Magnetic Resonance Imaging , Male , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Molecular Sequence Data , Protein Transport , Sequence Alignment , Sequence Deletion , Spastic Paraplegia, Hereditary/metabolism
3.
Hum Mol Genet ; 21(20): 4448-59, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22798624

ABSTRACT

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease caused by mutations in the survival of motor neuron 1 (SMN1) gene and deficient expression of the ubiquitously expressed SMN protein. Pathologically, SMA is characterized by motor neuron loss and severe muscle atrophy. During muscle atrophy, the E3 ligase atrogenes, atrogin-1 and muscle ring finger 1 (MuRF1), mediate muscle protein breakdown through the ubiquitin proteasome system. Atrogene expression can be induced by various upstream regulators. During acute denervation, they are activated by myogenin, which is in turn regulated by histone deacetylases 4 and 5. Here we show that atrogenes are induced in SMA model mice and in SMA patient muscle in association with increased myogenin and histone deacetylase-4 (HDAC4) expression. This activation during both acute denervation and SMA disease progression is suppressed by treatment with a histone deacetylase inhibitor; however, this treatment has no effect when atrogene induction occurs independently of myogenin. These results indicate that myogenin-dependent atrogene induction is amenable to pharmacological intervention with histone deacetylase inhibitors and help to explain the beneficial effects of these agents on SMA and other denervating diseases.


Subject(s)
Muscle Proteins/genetics , Muscular Atrophy, Spinal/genetics , Myogenin/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Animals , HEK293 Cells , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Humans , Mice , Mice, Inbred Strains , Muscle Proteins/metabolism , Muscular Atrophy, Spinal/enzymology , SKP Cullin F-Box Protein Ligases/metabolism , Tripartite Motif Proteins , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
4.
Neurodegener Dis ; 9(4): 199-209, 2012.
Article in English | MEDLINE | ID: mdl-22327341

ABSTRACT

Spinal muscular atrophy and spinal and bulbar muscular atrophy are characterized by lower motor neuron loss and muscle atrophy. Although it is accepted that motor neuron loss is a primary event in disease pathogenesis, inherent defects in muscle may also contribute to the disease progression and severity. In this review, we discuss the relative contributions of primary pathological processes in the motor axons, neuromuscular junctions and muscle to disease manifestations. Characterizing these contributions helps us to better understand the disease mechanisms and to better target therapeutic intervention.


Subject(s)
Motor Neuron Disease/genetics , Motor Neuron Disease/physiopathology , Muscle Development/physiology , Neurogenesis/physiology , Disease Progression , Humans , Motor Neuron Disease/pathology , Motor Neurons/pathology , Muscular Atrophy/pathology , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...