Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
1.
Environ Int ; 190: 108881, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39002332

ABSTRACT

INTRODUCTION: Exposure to endocrine disruptors during early childhood poses significant health risks. This study examines the exposure levels of French 3.5-year-old children to various persistent and non-persistent pollutants and pesticides using hair analysis as part of the ELFE national birth cohort. Differences in sex and geographical location among the children were investigated as ppossible determinants of exposure. METHODS: Exposure biomarkers from 32 chemical families were analyzed using LC-MS/MS and GC-MS/MS in 222 hair samples from children in the ELFE cohort. Of these, 46 mother-child pairs from the same cohort provided unique insight into prenatal and postnatal exposure. Regressions, correlations and discriminate analysis were used to assess relationships between exposure and possible confounding factors. RESULTS AND DISCUSSION: Among the biomarkers tested in children's hair samples, 69 had a detection frequency of ≥ 50 %, with 20 showing a 100 % detection rate. The most detected biomarkers belonged to the bisphenol, organochlorine and organophosphate families. Sex-specific differences were observed for 26 biomarkers, indicating the role of the child's sex in exposure levels. Additionally, regional differences were noted, with Hexachlorobenzene varying significantly across the different French regions. Nicotine presented both the highest concentration (16303 pg/mg) and highest median concentration (81 pg/mg) measured in the children's hair. Statistically significant correlations between the levels of biomarkers found in the hair samples of the mothers and their respective children were observed for fipronil (correlation coefficient = 0.32, p = 0.03), fipronil sulfone (correlation coefficient = 0.34, p = 0.02) and azoxystrobin (correlation coefficient = 0.29, p = 0.05). CONCLUSIONS: The study highlights the elevated exposure levels of young children to various pollutants, highlighting the influence of sex and geography. Hair analysis emerges as a crucial tool for monitoring endocrine disruptors, offering insights into exposure risks and reinforcing the need for protective measures against these harmful substances.

2.
J Infect Dev Ctries ; 18(5): 701-709, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38865404

ABSTRACT

INTRODUCTION: Global monitoring of severe acute respiratory syndrome related coronavirus 2 (SARS-CoV-2) genetic sequences and associated metadata is essential for coronavirus disease 2019 (COVID-19) response. Therefore, Sanger's partial genome sequencing technique was used to monitor the circulating variants of SARS-CoV-2 in Cameroon. METHODOLOGY: Nasopharyngeal specimen was collected from persons suspected of SARS-CoV-2 following the national guidelines between January and December 2021. All specimens with cycle threshold (Ct) below 30 after amplification were eligible for sequencing of the partial spike (S) gene of SARS-CoV-2 using the Sanger sequencing method. RESULTS: During the year 2021, 1481 real time reverse transcriptase polymerase chain reaction (RT-PCR) SARS-CoV-2 positive samples were selected for partial sequencing of the S gene of SARS-CoV-2. Amongst these, 878 yielded good sequencing products. A total of 231 probable variants (26.3%) were identified. The variants were mainly represented by Delta (70.6%), Alpha (15.6%), Omicron (7.4%), Beta (3.5%), Mu (1.7%) and Gamma (0.4%). Phylogenetic analysis of the probable variants from Cameroon with reference strains confirmed that all prior and current variants of concern (VOC) clustered with their respective reference sequences. CONCLUSIONS: The surveillance strategy implemented in Cameroon, based on partial sequencing of the S gene enabled identification of the major circulating variants and provided information on the distribution of these variants, which contributed to implementing public health measures to control disease spread in the country.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Cameroon/epidemiology , SARS-CoV-2/genetics , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , COVID-19/virology , COVID-19/epidemiology , Male , Female , Adult , Adolescent , Child , Middle Aged , Young Adult , Child, Preschool , Nasopharynx/virology , Aged , Phylogeny , Infant
3.
Nature ; 630(8015): 158-165, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38693268

ABSTRACT

The liver has a unique ability to regenerate1,2; however, in the setting of acute liver failure (ALF), this regenerative capacity is often overwhelmed, leaving emergency liver transplantation as the only curative option3-5. Here, to advance understanding of human liver regeneration, we use paired single-nucleus RNA sequencing combined with spatial profiling of healthy and ALF explant human livers to generate a single-cell, pan-lineage atlas of human liver regeneration. We uncover a novel ANXA2+ migratory hepatocyte subpopulation, which emerges during human liver regeneration, and a corollary subpopulation in a mouse model of acetaminophen (APAP)-induced liver regeneration. Interrogation of necrotic wound closure and hepatocyte proliferation across multiple timepoints following APAP-induced liver injury in mice demonstrates that wound closure precedes hepatocyte proliferation. Four-dimensional intravital imaging of APAP-induced mouse liver injury identifies motile hepatocytes at the edge of the necrotic area, enabling collective migration of the hepatocyte sheet to effect wound closure. Depletion of hepatocyte ANXA2 reduces hepatocyte growth factor-induced human and mouse hepatocyte migration in vitro, and abrogates necrotic wound closure following APAP-induced mouse liver injury. Together, our work dissects unanticipated aspects of liver regeneration, demonstrating an uncoupling of wound closure and hepatocyte proliferation and uncovering a novel migratory hepatocyte subpopulation that mediates wound closure following liver injury. Therapies designed to promote rapid reconstitution of normal hepatic microarchitecture and reparation of the gut-liver barrier may advance new areas of therapeutic discovery in regenerative medicine.


Subject(s)
Liver Failure, Acute , Liver Regeneration , Animals , Female , Humans , Male , Mice , Acetaminophen/pharmacology , Cell Lineage , Cell Movement/drug effects , Cell Proliferation/drug effects , Chemical and Drug Induced Liver Injury/pathology , Disease Models, Animal , Hepatocyte Growth Factor/metabolism , Hepatocyte Growth Factor/pharmacology , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Liver/cytology , Liver/drug effects , Liver/pathology , Liver Failure, Acute/pathology , Liver Failure, Acute/chemically induced , Liver Regeneration/drug effects , Mice, Inbred C57BL , Necrosis/chemically induced , Regenerative Medicine , Single-Cell Gene Expression Analysis , Wound Healing
4.
Environ Pollut ; 348: 123839, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38522601

ABSTRACT

Bisphenols and pesticides have been shown to alter circulating glucocorticoids levels in animals, but there is limited human data. Moreover, measurements from biological fluids may not be able to reflect long-term status of non-persistent pollutants and glucocorticoids due to the high variability in their levels. Using hair analysis, we examined the associations between glucocorticoid hormones and environmental exposure to multi-class organic pollutants among a healthy female population aged 25-45 years old. Concentrations of four glucocorticoids, four polychlorinated biphenyl congeners (PCBs), seven polybrominated diphenyl ether congeners (PBDEs), two bisphenols and 140 pesticides and their metabolites were measured in hair samples collected from 196 Chinese women living in urban areas. Due to the low detection frequency of some pollutants, associations were explored only on 54 pollutants, i.e. PCB 180, bisphenol A, bisphenol S and 51 pesticides and their metabolites. Using stability-based Lasso regression, there were associations of cortisol, tetrahydrocortisol, cortisone, and tetrahydrocortisone with 14, 10, 13 and 17 biomarkers of exposure to pollutants, respectively, with bisphenol S, p,p'-dichlorodiphenyldichloroethylene, diethyl phosphate, 3,5,6-trichloro-2-pyridinol, thiamethoxam, imidacloprid, fipronil, tebuconazole, trifluralin, pyraclostrobin and 1-(3,4-dichlorophenyl)-3-methylurea being associated with at least three of the four hormones. There were also associations between cortisone/cortisol molar ratio and pollutants, namely dimethyl phosphate, 3-methyl-4-nitrophenol, carbofuran, λ-cyhalothrin, permethrin, fipronil, flusilazole, prometryn and fenuron. Some of these relationships were confirmed by single-pollutant linear regression analyses. Overall, our results suggest that background level of exposure to bisphenols and currently used pesticides may interfere with the glucocorticoid homeostasis in healthy women.


Subject(s)
Benzhydryl Compounds , Cortisone , Environmental Pollutants , Hydrocarbons, Chlorinated , Pesticides , Phenols , Polychlorinated Biphenyls , Animals , Humans , Female , Middle Aged , Adult , Pesticides/analysis , Glucocorticoids , Hair Analysis , Cortisone/analysis , Hydrocortisone , Environmental Exposure/analysis , Polychlorinated Biphenyls/analysis , Environmental Pollutants/analysis , Dichlorodiphenyl Dichloroethylene/analysis , Hydrocarbons, Chlorinated/analysis
5.
Environ Sci Technol ; 58(12): 5383-5393, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38478982

ABSTRACT

Cardiometabolic health is complex and characterized by an ensemble of correlated and/or co-occurring conditions including obesity, dyslipidemia, hypertension, and diabetes mellitus. It is affected by social, lifestyle, and environmental factors, which in-turn exhibit complex correlation patterns. To account for the complexity of (i) exposure profiles and (ii) health outcomes, we propose to use a multitrait Bayesian variable selection approach and identify a sparse set of exposures jointly explanatory of the complex cardiometabolic health status. Using data from a subset (N = 941 participants) of the nutrition, environment, and cardiovascular health (NESCAV) study, we evaluated the link between measurements of the cumulative exposure to (N = 33) pollutants derived from hair and cardiometabolic health as proxied by up to nine measured traits. Our multitrait analysis showed increased statistical power, compared to single-trait analyses, to detect subtle contributions of exposures to a set of clinical phenotypes, while providing parsimonious results with improved interpretability. We identified six exposures that were jointly explanatory of cardiometabolic health as modeled by six complementary traits, of which, we identified strong associations between hexachlorobenzene and trifluralin exposure and adverse cardiometabolic health, including traits of obesity, dyslipidemia, and hypertension. This supports the use of this type of approach for the joint modeling, in an exposome context, of correlated exposures in relation to complex and multifaceted outcomes.


Subject(s)
Dyslipidemias , Exposome , Hypertension , Humans , Bayes Theorem , Obesity/epidemiology , Hair , Environmental Exposure
6.
Environ Res ; 251(Pt 1): 118606, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38460660

ABSTRACT

BACKGROUND: Pyrethroids are widely used pesticides and are suspected to affect children's neurodevelopment. The characterization of pyrethroid exposure during critical windows of development, such as fetal development and prenatal life, is essential to ensure a better understanding of pyrethroids potential effects within the concept of Developmental Origins of Health and Disease. OBJECTIVE: The aim of this study was to estimate maternal exposure of French pregnant women from biomonitoring data and simulate maternal and fetal internal concentrations of 3 pyrethroids (permethrin, cypermethrin and deltamethrin) using a multi-substance pregnancy-PBPK (physiologically based pharmacokinetics) model. The estimated maternal exposures were compared to newly proposed toxicological reference values (TRV) children specific also called draft child-specific reference value to assess pyrethroid exposure risk during pregnancy i.e. during the in utero exposure period. METHODS: A pregnancy-PBPK model was developed based on an existing adult pyrethroids model. The maternal exposure to each parent compound of pregnant women of the Elfe (French Longitudinal Study since Childhood) cohort was estimated by reverse dosimetry based on urinary biomonitoring data. To identify permethrin and cypermethrin contribution to their common urinary biomarkers of exposure, an exposure ratio based on biomarkers in hair was tested. Finally, exposure estimates were compared to current and draft child-specific reference values derived from rodent prenatal and postnatal exposure studies. RESULTS: The main contributor to maternal pyrethroid diet intake is cis-permethrin. In blood, total internal concentrations main contributor is deltamethrin. In brain, the major contributors to internal pyrethroid exposure are deltamethrin for fetuses and cis-permethrin for mothers. Risk is identified only for permethrin when referring to the draft child-specific reference value. 2.5% of the population exceeded permethrin draft child-specific reference value. CONCLUSIONS: A new reverse dosimetry approach using PBPK model combined with human biomonitoring data in urine and hair was proposed to estimate Elfe pregnant population exposure to a pyrethroids mixture with common metabolites.


Subject(s)
Maternal Exposure , Pyrethrins , Humans , Female , Pyrethrins/pharmacokinetics , Pyrethrins/urine , Pregnancy , France , Risk Assessment , Adult , Insecticides/pharmacokinetics , Insecticides/urine , Models, Biological , Young Adult , Hair/chemistry
7.
Sci Total Environ ; 917: 170535, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38307287

ABSTRACT

Owing to a wide range of advantages, such as stability, non-invasiveness, and ease of sampling, hair has been used progressively for comprehensive biomonitoring of organic pollutants for the last three decades. This has led to the development of new analytical and multi-class analysis methods for the assessment of a broad range of organic pollutants in various population groups, ranging from small-scale studies to advanced studies with a large number of participants based on different exposure settings. This meta-analysis summarizes the existing literature on the assessment of organic pollutants in hair in terms of residue levels, the correlation of hair residue levels with those of other biological matrices and socio-demographic factors, the reliability of hair versus other biomatrices for exposure assessment, the use of segmental hair analysis for chronic exposure evaluation and the effect of external contamination on hair residue levels. Significantly high concentrations of organic pollutants such as pesticides, flame retardants, polychlorinated biphenyls and polycyclic aromatic hydrocarbon were reported in human hair samples from different regions and under different exposure settings. Similarly, high concentrations of pesticides (from agricultural activities), flame retardants (E-waste dismantling activities), dioxins and furans were observed in various occupational settings. Moreover, significant correlations (p < 0.05) for hair and blood concentrations were observed in majority of studies featuring pesticides and flame retardants. While among sociodemographic factors, gender and age significantly affected the hair concentrations in females and children in general exposure settings, whereas adult workers in occupational settings. Furthermore, the assessment of the hair burden of persistent organic pollutants in domestic and wild animals showed high concentrations for pesticides such as HCHs and DDTs whereas the laboratory-based studies using animals demonstrated strong correlations between exposure dose, exposure duration, and measured organic pollutant levels, mainly for chlorpyrifos, diazinon, terbuthylazine, aldrin, dieldrin and pyrethroid metabolites. Considering the critical analysis of the results obtained from literature review, hair is regarded as a reliable matrix for organic pollutant assessment; however, some limitations, as discussed in this review, need to be overcome to reinforce the status of hair as a suitable matrix for exposure assessment.


Subject(s)
Environmental Pollutants , Flame Retardants , Pesticides , Polychlorinated Biphenyls , Adult , Animals , Child , Female , Humans , Environmental Monitoring/methods , Environmental Pollutants/analysis , Flame Retardants/analysis , Hair/chemistry , Pesticides/analysis , Polychlorinated Biphenyls/analysis , Reproducibility of Results
8.
J Hazard Mater ; 461: 132637, 2024 01 05.
Article in English | MEDLINE | ID: mdl-37788552

ABSTRACT

Obesity, diabetes, hypertension and dyslipidemia are well-established risk factors for cardiovascular diseases (CVDs), and have been associated with exposure to persistent organic pollutants. However, studies have been lacking as regards effects of non-persistent pesticides on CVD risk factors. Here, we investigated whether background chronic exposure to polychlorinated biphenyls (PCBs) and multiclass pesticides were associated with the prevalence of these CVD risk factors in 502 Belgian and 487 Luxembourgish adults aged 18-69 years from the Nutrition, environment and cardiovascular health (NESCAV) study 2007-2013. We used hair analysis to evaluate the chronic internal exposure to three PCBs, seven organochlorine pesticides (OCs) and 18 non-persistent pesticides. We found positive associations of obesity with hexachlorobenzene (HCB), ß-hexachlorocyclohexane (ß-HCH) and chlorpyrifos, diabetes with pentachlorophenol (PCP), fipronil and fipronil sulfone, hypertension with PCB180 and chlorpyrifos, and dyslipidemia with diflufenican and oxadiazon, among others. However, we also found some inverse associations, such as obesity with PCP, diabetes with γ-HCH, hypertension with diflufenican, and dyslipidemia with chlorpyrifos. These results add to the existing evidence that OC exposure may contribute to the development of CVDs. Additionally, the present study revealed associations between CVD risk factors and chronic environmental exposure to currently used pesticides such as organophosphorus and pyrethroid pesticides.


Subject(s)
Cardiovascular Diseases , Chlorpyrifos , Diabetes Mellitus , Dyslipidemias , Environmental Pollutants , Hydrocarbons, Chlorinated , Hypertension , Pentachlorophenol , Pesticides , Polychlorinated Biphenyls , Adult , Humans , Polychlorinated Biphenyls/analysis , Pesticides/toxicity , Pesticides/analysis , Environmental Pollutants/toxicity , Environmental Pollutants/analysis , Hydrocarbons, Chlorinated/toxicity , Hydrocarbons, Chlorinated/analysis , Hypertension/chemically induced , Hypertension/epidemiology , Diabetes Mellitus/epidemiology , Obesity/chemically induced , Obesity/epidemiology , Dyslipidemias/chemically induced , Dyslipidemias/epidemiology , Hair/chemistry
9.
Environ Sci Technol ; 57(48): 19383-19394, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37934613

ABSTRACT

Organic pollutant exposure may alter sex steroid hormone levels in both animals and humans, but studies on mixture effects have been lacking and mainly limited to persistent organic pollutants, with few hormones being investigated. Moreover, measurements from a single blood or urine sample may not be able to reflect long-term status. Using hair analysis, here, we evaluated the relationship between multiclass organic pollutants and sex steroid hormones in 196 healthy Chinese women aged 25-45 years. Associations with nine sex steroid hormones, including progesterone, androstenedione (AD), testosterone (T), estrone (E1), and 17ß-estradiol (E2), and eight related hormone ratios were explored on 54 pollutants from polychlorinated biphenyl (PCB), pesticide, and bisphenol families using stability-based Lasso regression analysis. Our results showed that each hormone was associated with a mixture of at least 10 examined pollutants. In particular, hair E2 concentration was associated with 19 pollutants, including γ-hexachlorocyclohexane, propoxur, permethrin, fipronil, mecoprop, prochloraz, and carbendazim. There were also associations between pollutants and hormone ratios, with pentachlorophenol, dimethylthiophosphate, 3-phenoxybenzoic acid, and flusilazole being related to both E1/AD and E2/T ratios. Our results suggest that exposure to background levels of pesticides PCB180 and bisphenol S may affect sex steroid hormone homeostasis among women of reproductive age.


Subject(s)
Environmental Pollutants , Pesticides , Polychlorinated Biphenyls , Animals , Humans , Female , Environmental Pollutants/analysis , Environmental Exposure/analysis , Gonadal Steroid Hormones , Polychlorinated Biphenyls/analysis , Testosterone/analysis , Pesticides/analysis
10.
Chem Res Toxicol ; 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37729183

ABSTRACT

Epidemiological studies aim to assess associations between diseases and risk factors. Such investigations involve a large sample size and require powerful analytical methods to measure the effects of risk factors, resulting in a long analysis time. In this study, chemical exposure markers were detected as the main variables strongly affecting two components coming from a principal component analysis (PCA) exploration of the metabolomic data generated from urinary samples collected on a cohort of about 500 individuals using direct introduction coupled with a Fourier-transform ion cyclotron resonance instrument. The assignment of their chemical identity was first achieved based on their isotopic fine structures detected at very high resolution (Rp > 900,000). Their identification as dimethylbiguanide and sotalol was obtained at level 1, thanks to the available authentic chemical standards, tandem mass spectrometry (MS/MS) experiments, and collision cross section measurements. Epidemiological data confirmed that the subjects discriminated by PCA had declared to be prescribed these drugs for either type II diabetes or cardiac arrhythmia. Concentrations of these drugs in urine samples of interest were also estimated by rapid quantification using an external standard calibration method, direct introduction, and MS/MS experiments. Regression analyses showed a good correlation between the estimated drug concentrations and the scores of individuals distributed on these specific PCs. The detection of these chemical exposure markers proved the potential of the proposed high-throughput approach without any prior drug exposure knowledge as a powerful emerging tool for rapid and large-scale phenotyping of subjects enrolled in epidemiological studies to rapidly characterize the chemical exposome and adherence to medical prescriptions.

11.
Microbiome ; 11(1): 124, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37264459

ABSTRACT

BACKGROUND: The effects of air pollutants, particularly polycyclic aromatic hydrocarbons (PAHs), on the skin microbiome remain poorly understood. Thus, to better understand the interplay between air pollutants, microbiomes, and skin conditions, we applied metagenomics and metabolomics to analyze the effects of PAHs in air pollution on the skin microbiomes of over 120 subjects residing in two cities in China with different levels of air pollution. RESULTS: The skin microbiomes differentiated into two cutotypes (termed 1 and 2) with distinct taxonomic, functional, resistome, and metabolite compositions as well as skin phenotypes that transcended geography and host factors. High PAH exposure was linked to dry skin and cutotype 2, which was enriched with species with potential biodegradation functions and had reduced correlation network structure integrity. The positive correlations identified between dominant taxa, key functional genes, and metabolites in the arginine biosynthesis pathway in cutotype 1 suggest that arginine from bacteria contributes to the synthesis of filaggrin-derived natural moisturizing factors (NMFs), which provide hydration for the skin, and could explain the normal skin phenotype observed. In contrast, no correlation with the arginine biosynthesis pathway was observed in cutotype 2, which indicates the limited hydration functions of NMFs and explains the observed dry skin phenotype. In addition to dryness, skin associated with cutotype 2 appeared prone to other adverse conditions such as inflammation. CONCLUSIONS: This study revealed the roles of PAHs in driving skin microbiome differentiation into cutotypes that vary extensively in taxonomy and metabolic functions and may subsequently lead to variations in skin-microbe interactions that affect host skin health. An improved understanding of the roles of microbiomes on skin exposed to air pollutants can aid the development of strategies that harness microbes to prevent undesirable skin conditions. Video Abstract.


Subject(s)
Air Pollutants , Microbiota , Polycyclic Aromatic Hydrocarbons , Skin/chemistry , Air Pollutants/analysis , Biodegradation, Environmental , Microbiota/genetics , Environmental Monitoring
12.
Environ Sci Technol ; 57(19): 7336-7345, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37146304

ABSTRACT

Mechanisms governing chemicals' incorporation in hair are incompletely understood, and gaps remain to link the concentration of chemicals in hair to level of exposure and internal dose present in the body. This study assesses the relevance of hair analysis for the biomonitoring of exposure to fast-elimination compounds and investigates the role of pharmacokinetics (PK) in their incorporation in hair. Rats were administered with pesticides, bisphenols, phthalates, and DINCH over 2 months. Hairs were analyzed for 28 chemicals/metabolites to investigate correlations between their concentration in hair and the dose administered to the animals. Urine collected over 24 h after gavage was used to determine chemicals' PK and to investigate their influence on incorporation into hair by means of linear mixed models (LMMs). Eighteen chemicals presented a significant correlation between concentration in hair and level of exposure. In models combining all chemicals, agreement between concentration in hair predicted by LMM and experimental values was moderate (R2 = 0.19) but significantly increased when PK were included in the models (R2 = 0.37), and even more when chemical families were considered separately (e.g., R2 = 0.98 for pesticides). This study shows that pharmacokinetics mediate incorporation of chemicals in hair and suggests the relevance of hair for assessing exposure to fast-elimination chemicals.


Subject(s)
Environmental Pollutants , Pesticides , Rats , Animals , Hair/chemistry , Pesticides/analysis , Environmental Exposure/analysis , Environmental Pollutants/analysis
13.
Environ Int ; 173: 107780, 2023 03.
Article in English | MEDLINE | ID: mdl-36822006

ABSTRACT

Throughout life individuals are exposed to a large array of diverse environmental exposures (exposome). Hair analyses can assess chronic exposure to a large number of chemicals with less intra-variability than urine and blood. This is essential for studies that aim to achieve a global vision of the exposome. We aimed at characterizing the adult exposome by describing 175 environmental exposures and correlation patterns between and within exposure groups. A subsample of participants of the European Health Examination Survey, covering information on exposure to chemical pollutants in hair samples, were included in the present analysis (N = 442). Concentrations of micronutrients, lifestyle, home environment and socioeconomic information completed the exposome description and were obtained through blood analyses and questionnaires. We detected 29 persistent and non-persistent chemical pollutants in more than 70% of hair samples. Compared to women, men had higher concentrations of pesticides, lower concentrations of micronutrients (with the exception of vitamin A), and presented higher alcohol consumption. Across all exposures, a low median absolute correlation was found, 0.05 (5th - 95th centiles = 0.10, 0.20). We observed higher correlations and median correlations within exposure groups than between groups of exposure. The highest median correlation was observed between plasticizers (bisphenol A and S) in both men (0.50) and women (0.31). A 70% and 95% of cumulative variance was explained by 37 and 73 principal components respectively. We found a wide range of chemical exposures in hair samples of men and women. The adult exposome was complex and multidimensional. Future exposome studies should include hair as a matrix for characterizing exposure to multiple environmental chemicals.


Subject(s)
Environmental Pollutants , Exposome , Male , Humans , Female , Adult , Environmental Exposure/analysis , Environmental Pollutants/analysis , Hair/chemistry , Alcohol Drinking
14.
Drug Test Anal ; 15(9): 962-970, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36562126

ABSTRACT

Despite inititatives to reduce tobacco consumption, smoking remains a primary cause of death for both smokers and nonsmokers exposed to environmental tobacco smoke (ETS). The characteristics of some specific groups can make them more exposed to ETS or limit the benefit of prevention measures. This study investigated determinants of ETS in a population of young adult students, considered at higher risk of exposure due to their specific lifestyle. This cross-sectional study involved 90 students aged 20 ± 1.7 years, from the University of Luxembourg, prior to the smoking ban enforcement in public places in the country. Participants reported their tobacco consumption and exposure to ETS at home and/or in public places, and provided a hair sample analyzed for nicotine and cotinine. Nicotine and cotinine were significantly higher in smokers than in nonsmokers' hair in general (median: 2.6 vs. 0.9 ng/mg and 87.1 vs. 22.5 pg/mg respectively). However, nonsmokers exposed to ETS at home and in public places had comparable concentrations to smokers (nic = 2.2 ng/mg; cot = 56.2 pg/mg), whereas unexposed nonsmokers presented significantly lower values (nic = 0.4 ng/mg, cot = 8.5 pg/mg). Nonsmokers exposed to ETS only at home presented higher values than nonsmokers only exposed in public places (nic: 1.3 vs. 0.8 ng/mg, cot: 70.4 vs. 15.0 pg/mg). The study shows the widespread exposure to ETS in this population, the importance of exposure assessment, and the relevance of hair analysis for this purpose. Results suggest that ETS can lead to equivalent exposure to active smoking and that exposure at home can highly contribute to ETS, which is not solved by smoking ban in public places.


Subject(s)
Smoke-Free Policy , Tobacco Smoke Pollution , Humans , Young Adult , Tobacco Smoke Pollution/analysis , Nicotine/analysis , Cotinine/analysis , Hair Analysis , Cross-Sectional Studies , Students , Environmental Exposure/analysis
15.
Environ Pollut ; 313: 120179, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36116566

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) have been shown to influence endogenous hormones levels in animal models, but little is known about the effects of their mixtures. For hormone measurements, hair analysis is a promising approach to provide information on long-term status of hormones. Herein we used hair analysis to assess the combined effects of 13 PAHs on steroid and thyroid hormones levels in a rat model. The PAH mixture was administered orally three times per week to female rats at doses of 0, 10, 20, 40, 80, 200, 400 and 800 µg/kg of body weight for each compound over a 90-day exposure period. Fourteen out of 36 analyzed hormones were detected in rat hair, including pregnenolone (P5), 17α-hydroxyprogesterone (17-OHP4), corticosterone (CORT), dehydroepiandrosterone (DHEA), androstenedione (AD), 3,3'-diiodo-L-thyronine (T2), 3,3',5-triiodo-L-thyronine (T3), and 3,5,3',5'-triiodo-L-thyronine (T4). The PAH mixture significantly elevated P5 and DHEA levels at the doses of 200 and 400 µg/kg but reduced T2 and T3 levels at the highest dose as compared to the control. While P5, DHEA, 17-OHP4 and AD concentrations exhibited inverted U-shaped dose responses, T2, T3 and T4 concentrations exhibited inverse linear dose responses, which are further confirmed by their relationships with hair hydroxylated PAHs (OH-PAHs) concentrations. Likewise, there were significant nonmonotonic relationships of hormone molar ratios (e.g., AD/17-OHP4 and DHEA/CORT ratios) with exposure intensity and OH-PAHs. Overall, our results demonstrate the capability of PAH mixtures to interfere with steroid and thyroid hormones in female rats.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Androstenedione , Animals , Corticosterone , Dehydroepiandrosterone , Female , Hair/chemistry , Hydroxyprogesterones , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Pregnenolone , Rats , Thyroid Gland , Thyroid Hormones , Thyronines
16.
Chemosphere ; 303(Pt 2): 135059, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35643162

ABSTRACT

Pesticide exposure has been associated with hormonal disruption in both animals and humans. However, there is limited knowledge of the combined effects of complex mixtures of pesticides on endogenous hormone levels. Here, we used hair analysis to assess the impact of a pesticide mixture comprising 19 components from multiple chemical classes at eight doses of 0-400 µg/kg body weight (bw) three times per week per component on concentrations of 36 steroid and thyroid hormones in female rats over a 90-day exposure period. We detected 13 hormones in rat hair, namely estradiol (E2), androstenedione (AD), testosterone (T), dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate (DHEAS), pregnenolone (P5), progesterone (P4), 11-deoxycorticosterone (11-DOC), corticosterone (CORT), 3,3'-l-diiodothyronine (T2), 3,5,3'-l-triiodothyronine (T3), 3,3',5'-l-triiodothyronine (rT3), and 3,5,3',5'-l-tetraiodothyronine (T4). In comparison to the control group, hair E2 concentration was significantly lower in the two highest (200 and 400 µg/kg bw) exposure groups, whereas hair DHEAS and CORT concentrations were significantly higher in the 40 µg/kg bw and the highest exposure groups, respectively. Results from generalized additive models suggest that pesticide exposure resulted in monotonic dose responses in hair E2 concentration, CORT concentration and DHEA/CORT molar ratio but nonmonotonic dose responses in hair T concentration, DHEAS concentration, P4/P5 and DHEA/DHEAS molar ratios. The associations of E2, CORT and DHEA/CORT ratio with exposure intensity were confirmed by their significant linear relationships with hair concentrations of at least 23 of the 25 exposure biomarkers analyzed. Our results demonstrate that exposure to low levels of the pesticide mixture evaluated here can alter hair reproductive and adrenal hormones levels.


Subject(s)
Dehydroepiandrosterone , Pesticides , Androstenedione , Animals , Body Weight , Corticosterone , Female , Hair Analysis , Pesticides/toxicity , Rats , Triiodothyronine
17.
Article in English | MEDLINE | ID: mdl-35682369

ABSTRACT

Human biomonitoring has become a pivotal tool for supporting chemicals' policies. It provides information on real-life human exposures and is increasingly used to prioritize chemicals of health concern and to evaluate the success of chemical policies. Europe has launched the ambitious REACH program in 2007 to improve the protection of human health and the environment. In October 2020 the EU commission published its new chemicals strategy for sustainability towards a toxic-free environment. The European Parliament called upon the commission to collect human biomonitoring data to support chemical's risk assessment and risk management. This manuscript describes the organization of the first HBM4EU-aligned studies that obtain comparable human biomonitoring (HBM) data of European citizens to monitor their internal exposure to environmental chemicals. The HBM4EU-aligned studies build on existing HBM capacity in Europe by aligning national or regional HBM studies. The HBM4EU-aligned studies focus on three age groups: children, teenagers, and adults. The participants are recruited between 2014 and 2021 in 11 to 12 primary sampling units that are geographically distributed across Europe. Urine samples are collected in all age groups, and blood samples are collected in children and teenagers. Auxiliary information on socio-demographics, lifestyle, health status, environment, and diet is collected using questionnaires. In total, biological samples from 3137 children aged 6-12 years are collected for the analysis of biomarkers for phthalates, HEXAMOLL® DINCH, and flame retardants. Samples from 2950 teenagers aged 12-18 years are collected for the analysis of biomarkers for phthalates, Hexamoll® DINCH, and per- and polyfluoroalkyl substances (PFASs), and samples from 3522 adults aged 20-39 years are collected for the analysis of cadmium, bisphenols, and metabolites of polyaromatic hydrocarbons (PAHs). The children's group consists of 50.4% boys and 49.5% girls, of which 44.1% live in cities, 29.0% live in towns/suburbs, and 26.8% live in rural areas. The teenagers' group includes 50.6% girls and 49.4% boys, with 37.7% of residents in cities, 31.2% in towns/suburbs, and 30.2% in rural areas. The adult group consists of 52.6% women and 47.4% men, 71.9% live in cities, 14.2% in towns/suburbs, and only 13.4% live in rural areas. The study population approaches the characteristics of the general European population based on age-matched EUROSTAT EU-28, 2017 data; however, individuals who obtained no to lower educational level (ISCED 0-2) are underrepresented. The data on internal human exposure to priority chemicals from this unique cohort will provide a baseline for Europe's strategy towards a non-toxic environment and challenges and recommendations to improve the sampling frame for future EU-wide HBM surveys are discussed.


Subject(s)
Biological Monitoring , Environmental Pollutants , Adolescent , Adult , Cadmium/analysis , Child , Environmental Exposure/analysis , Environmental Monitoring , Environmental Pollutants/analysis , Europe , Female , Humans , Male , Risk Assessment
18.
Environ Int ; 165: 107342, 2022 07.
Article in English | MEDLINE | ID: mdl-35714525

ABSTRACT

The specific physiology and behaviour of children makes them particularly vulnerable to chemical exposure. Specific studies must therefore be conducted to understand the impact of pollution on children's health. Human biomonitoring is a reliable approach for exposure assessment, and hair, allowing the detection of parent chemicals and metabolites, and covering wider time windows than urine and blood is particularly adapted to study chronic exposure. The present study aims at assessing chemical exposure and investigating possible determinants of exposure in children living in Luxembourg. Hair samples were collected from 256 children below 13 y/o and tested for 153 compounds (140 pesticides, 4 PCBs, 7 BDEs and 2 bisphenols). Moreover, anthropometric parameters, information on diet, residence, and presence of pets at home was collected through questionnaires. Correlations, regressions, t-tests, PLS-DA and MANOVAs, were used to investigate exposure patterns. Twenty-nine to 88 (median = 61) compounds were detected per sample. The highest median concentration was observed for BPA (133.6 pg/mg). Twenty-three biomarkers were detected in ≥ 95% of the samples, including 13 in all samples (11 pesticides, BPA and BPS). Exposure was higher at younger ages (R2 = 0.57), and boys were more exposed to non-persistent pesticides than girls. Presence of persistent organic pollutants in most children suggests that exposure is still ongoing. Moreover, diet (e.g. imazalil: 0.33 pg/mg in organic, 1.15 pg/mg in conventional, p-value < 0.001), residence area (e.g. imidacloprid: 0.29 pg/mg in urban, 0.47 pg/mg in countryside, p-value = 0.03), and having pets (e.g. fipronil: 0.32 pg/mg in pets, 0.09 pg/mg in no pets, p-value < 0.001) were identified as determinants of exposure. The present study demonstrates that children are simultaneously exposed to multiple pollutants from different chemical classes, and confirms the suitability of hair to investigate exposure. These results set the basis for further investigations to better understand the determinants of chemical exposure in children.


Subject(s)
Exposome , Pesticides , Child , Environmental Monitoring/methods , Female , Hair Analysis , Humans , Luxembourg , Male , Pesticides/analysis
19.
Ecotoxicol Environ Saf ; 233: 113341, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35217306

ABSTRACT

Wildlife is increasingly exposed to environmental pollution, but data illustrating to what extent this exposure can impact health and survival of endangered species is missing. In humans, hair matrix analysis is a reliable tool for assessing cumulative exposure to organic pollutants such as pesticides but has rarely been used in other primates for this purpose. LC/MS-MS and GC/MS-MS multi-residue methods were used to screen the presence of 152 organic pollutants and their metabolites belonging to 21 different chemical families in hair samples from our closest relative, the chimpanzee. Samples were collected from 20 wild chimpanzees in Sebitoli, Kibale National Park, Uganda and 9 captive chimpanzees in the Réserve Africaine de Sigean, France. In total, 90 chemicals were detected, 60 in wild chimpanzees and 79 in captive chimpanzees. The median concentrations of detected chemicals in captive individuals were significantly higher than those in wild chimpanzees. Hair from the captive individuals at RAS was sampled a second time after 6 months in an environment of reduced exposure to these pollutants (diet of organic food, decreased use of plastic food and water containers). The number of chemicals detected in captive chimpanzees reduced from 79 to 63, and their concentrations were also significantly reduced. In the present study we report for the first time the use of hair analysis to detect organic pollutants in primate hair. We conclude that both wild and captive chimpanzees are exposed to a large range of different chemicals through their diet. Our study provides surprising and alarming evidence that besides the direct threats of poaching, deforestation and diseases, wild chimpanzees might be endangered by indirect consequences of anthropic activities. As chimpanzees are our closest relatives, our results should be considered as an alert for human health as well.


Subject(s)
Biological Monitoring , Environmental Pollution , Pan troglodytes , Animals , Animals, Wild , France , Parks, Recreational , Uganda
20.
Eur J Endocrinol ; 186(5): K9-K15, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35192511

ABSTRACT

Objective: Endogenous hormones regulate numerous physiological processes in humans. Some of them are routinely measured in blood, saliva and/or urine for the diagnosis of disorders. The analysis of fluids may, however, require multiple samples collected at different time points to avoid the high variability in the concentration of some hormones. In contrast, hair analysis has been proposed as an interesting alternative to reveal average hormone levels over a longer period. In this work, we developed and validated an analytical method for analyzing 36 endogenous steroid and thyroid hormones and one pineal hormone in human hair using ultra-performance liquid chromatography (UPLC)-tandem mass spectrometry (MS/MS). Methods: Sample preparation involved hair decontamination, pulverization, methanol extraction, and purification with C18-solid phase extraction. Extracts were then divided into two portions, respectively injected into an UPLC-MS/MS system, and analyzed using two different instrumental methods. The method was applied to a healthy female population aged 25-45 years. Results: The method was validated on supplemented hair samples for the 37 targeted hormones, and its application to the population under study allowed to detect 32 compounds in 2-100% of the samples. Complete reference intervals (2.5-97.5th percentiles) were established for estrone, 17ß-estradiol, androstenedione, dehydroepiandrosterone, progesterone, 17α-hydroxyprogesterone, cortisone, cortisol and 3,3',5-triiodo-L-thyronine. Hair cortisone, cortisol, tetrahydrocortisone and tetrahydrocortisol concentrations were highly correlated with each other, with Kendall's τ correlation coefficients ranging from 0.52 to 0.68. Conclusion: Allowing the detection of 32 hormones from different chemical classes, the present method will allow to broaden hormonal profiling for better identifying endocrine disorders.


Subject(s)
Hair Analysis , Tandem Mass Spectrometry , Adult , Chromatography, Liquid , Female , Humans , Hydrocortisone/analysis , Middle Aged , Steroids/analysis , Tandem Mass Spectrometry/methods , Thyroid Hormones
SELECTION OF CITATIONS
SEARCH DETAIL
...