ABSTRACT
Coralsnakes of the genus Micrurus are a diverse group of venomous snakes ranging from the southern United States to southern South America. Much uncertainty remains over the genus diversity, and understanding Micrurus systematics is of medical importance. In particular, the widespread Micrurus nigrocinctus spans from Mexico throughout Central America and into Colombia, with a number of described subspecies. This study provides new insights into the phylogenetic relationships within M. nigrocinctus by examining sequence data from a broad sampling of specimens from Mexico, Guatemala, Honduras, Nicaragua, Costa Rica, and Panama. The recovered phylogenetic relationships suggest that M. nigrocinctus is a species complex originating in the Pliocene and composed of at least three distinct species-level lineages. In addition, recovery of highly divergent clades supports the elevation of some currently recognized subspecies to the full species rank while others may require synonymization.
Subject(s)
Venoms , United States , Phylogeny , Central America , Panama , MexicoABSTRACT
Understanding the processes that generate and maintain biodiversity at and below the species level is a central goal of evolutionary biology. Here we explore the spatial and temporal drivers of diversification of the treefrog subgroup Dendropsophus rubicundulus, a subgroup of the D. microcephalus species group, over periods of pronounced geological and climatic changes in the Neotropical savannas that they inhabit. This subgroup currently comprises 11 recognized species distributed across the Brazilian and Bolivian savannas, but the taxonomy has been in a state of flux, necessitating reexamination. Using newly generated single nucleotide polymorphism (SNP) data from restriction-site associated DNA sequencing (RADseq) and mitochondrial 16S sequence data for â¼150 specimens, we inferred phylogenetic relationships, tested species limits using a model-based approach, and estimated divergence times to gain insights into the geographic and climatic events that affected the diversification of this subgroup. Our results recognized at least nine species: D. anataliasiasi, D. araguaya, D. cerradensis, D. elianeae, D. jimi, D. rubicundulus, D. tritaeniatus, D. rozenmani, and D. sanborni. Although we did not collect SNP data for the latter two species, they are likely distinct based on mitochondrial data. In addition, we found genetic structure within the widespread species D. rubicundulus, which comprises three allopatric lineages connected by gene flow upon secondary contact. We also found evidence of population structure and perhaps undescribed diversity in D. elianeae, which warrants further study. The D. rubicundulus subgroup is estimated to have originated in the Late Miocene (â¼5.45 million years ago), with diversification continuing through the Pliocene and Early Pleistocene, followed by the most recent divergence of D. rubicundulus lineages in the Middle Pleistocene. The epeirogenic uplift followed by erosion and denudation of the central Brazilian plateau throughout the Pliocene and Pleistocene, in combination with the increasing frequency and amplitude of climatic fluctuations during the Pleistocene, was important for generating and structuring diversity at or below the species level in the D. rubicundulus subgroup.
Subject(s)
Anura , Grassland , Animals , Phylogeny , Phylogeography , Anura/genetics , Brazil , DNA, Mitochondrial/genetics , Genetic VariationABSTRACT
Xantusiidae (night lizards) is a clade of small-bodied, cryptic lizards endemic to the New World. The clade is characterized by several features that would benefit from interpretation in a phylogenetic context, including: (1) monophyletic status of extant taxa Cricosaura, Lepidophyma, and Xantusia; (2) a species endemic to Cuba (Cricosaura typica) of disputed age; (3) origins of the parthenogenetic species of Lepidophyma; (4) pronounced micro-habitat differences accompanied by distinct morphologies in both Xantusia and Lepidophyma; and (5) placement of Xantusia riversiana, the only vertebrate species endemic to the California Channel Islands, which is highly divergent from its mainland relatives. This study incorporates extensive new character data from multiple gene regions to investigate the phylogeny of Xantusiidae using the most comprehensive taxonomic sampling available to date. Parsimony and partitioned Bayesian analyses of more than 7 kb of mitochondrial and nuclear sequence data from 11 loci all confirm that Xantusiidae is monophyletic, and comprises three well-supported clades: Cricosaura, Xantusia, and Lepidophyma. The Cuban endemic Cricosaura typica is well supported as the sister to all other xantusiids. Estimates of divergence time indicate that Cricosaura diverged from the (Lepidophyma+Xantusia) clade ≈ 81 million years ago (Ma), a time frame consistent with the separation of the Antilles from North America. Our results also confirm and extend an earlier study suggesting that parthenogenesis has arisen at least twice within Lepidophyma without hybridization, that rock-crevice ecomorphs evolved numerous times (>9) within Xantusia and Lepidophyma, and that the large-bodied Channel Island endemic X. riversiana is a distinct, early lineage that may form the sister group to the small-bodied congeners of the mainland.
Subject(s)
Cell Nucleus/genetics , DNA, Mitochondrial/classification , Genetic Speciation , Lizards/classification , Phylogeny , Animals , Bayes Theorem , Body Size , California , Cuba , DNA, Mitochondrial/genetics , Genetic Variation , Genetics, Population , Lizards/genetics , Phylogeography , Population Dynamics , Sequence Analysis, DNA , Time FactorsABSTRACT
Inferring the evolutionary and biogeographic history of taxa occurring in a particular region is one way to determine the processes by which the biodiversity of that region originated. Tree boas of the genus Corallus are an ancient clade and occur throughout Central and South America and the Lesser Antilles, making it an excellent group for investigating Neotropical biogeography. Using sequenced portions of two mitochondrial and three nuclear loci for individuals of all recognized species of Corallus, we infer phylogenetic relationships, present the first molecular analysis of the phylogenetic placement of the enigmatic C. cropanii, develop a time-calibrated phylogeny, and explore the biogeographic history of the genus. We found that Corallus diversified within mainland South America, via over-water dispersals to the Lesser Antilles and Central America, and via the traditionally recognized Panamanian land bridge. Divergence time estimates reject the South American Caribbean-Track as a general biogeographic model for Corallus and implicate a role for events during the Oligocene and Miocene in diversification such as marine incursions and the uplift of the Andes. Our findings also suggest that recognition of the island endemic species, C. grenadensis and C. cookii, is questionable as they are nested within the widely distributed species, C. hortulanus. Our results highlight the importance of using widespread taxa when forming and testing biogeographic hypotheses in complex regions and further illustrate the difficulty of forming broadly applicable hypotheses regarding patterns of diversification in the Neotropical region.
Subject(s)
Animal Distribution , Boidae/classification , Boidae/genetics , Evolution, Molecular , Phylogeny , Animals , Base Sequence , Bayes Theorem , Central America , DNA Primers/genetics , Likelihood Functions , Models, Genetic , Molecular Sequence Data , Phylogeography , Sequence Analysis, DNA , South AmericaABSTRACT
The flattop mountains (tepuis) of South America are ancient remnants of the Precambrian Guiana Shield plateau. The tepui summits, isolated by their surrounding cliffs that can be up to 1000 m tall, are thought of as "islands in the sky," harboring relict flora and fauna that underwent vicariant speciation due to plateau fragmentation. High endemicity atop tepui summits support the idea of an ancient "Lost World" biota. However, recent work suggests that dispersal between lowlands and summits has occurred long after tepui formation indicating that tepui summits may not be as isolated from the lowlands as researchers have long suggested. Neither view of the origin of the tepui biota (i.e., ancient vicariance vs. recent dispersal) has strong empirical support owing to a lack of studies. We test diversification hypotheses of the Guiana Shield highlands by estimating divergence times of an endemic group of treefrogs, Tepuihyla. We find that diversification of this group does not support an ancient origin for this taxon; instead, divergence times among the highland species are 2-5 Ma. Our data indicate that most highland speciation occurred during the Pliocene. Thus, this unparalleled landscape known as "The Lost World" is inhabited, in part, not by Early Tertiary relicts but neoendemics.
Subject(s)
Anura/genetics , Genetic Speciation , Animals , Phylogeography , South AmericaABSTRACT
The Guiana Shield (GS) is one of the most pristine regions of Amazonia and biologically one of the richest areas on Earth. How and when this massive diversity arose remains the subject of considerable debate. The prevailing hypothesis of Quaternary glacial refugia suggests that a part of the eastern GS, among other areas in Amazonia, served as stable forested refugia during periods of aridity. However, the recently proposed disturbance-vicariance hypothesis proposes that fluctuations in temperature on orbital timescales, with some associated aridity, have driven Neotropical diversification. The expectations of the temporal and spatial organization of biodiversity differ between these two hypotheses. Here, we compare the genetic structure of 12 leaf-litter inhabiting frog species from the GS lowlands using a combination of mitochondrial and nuclear sequences in an integrative analytical approach that includes phylogenetic reconstructions, molecular dating, and Geographic Information System methods. This comparative and integrated approach overcomes the well-known limitations of phylogeographic inference based on single species and single loci. All of the focal species exhibit distinct phylogeographic patterns highlighting taxon-specific historical distributions, ecological tolerances to climatic disturbance, and dispersal abilities. Nevertheless, all but one species exhibit a history of fragmentation/isolation within the eastern GS during the Quaternary with spatial and temporal concordance among species. The signature of isolation in northern French Guiana (FG) during the early Pleistocene is particularly clear. Approximate Bayesian Computation supports the synchrony of the divergence between northern FG and other GS lineages. Substructure observed throughout the GS suggests further Quaternary fragmentation and a role for rivers. Our findings support fragmentation of moist tropical forest in the eastern GS during this period when the refuge hypothesis would have the region serving as a contiguous wet-forest refuge.
Subject(s)
Anura/classification , Biodiversity , Phylogeny , Phylogeography , Animals , Anura/genetics , Guyana , Molecular Sequence Data , Tropical ClimateABSTRACT
BACKGROUND: Data on factors influencing inclusion of Hodgkin's lymphoma (HL) patients in randomized clinical trials (RCT) are limited and, for the present study they were analyzed in a RCT for III/IV HL. PATIENTS AND METHODS: All patients with stage III/IV HL referred to the Saint-Louis Hospital between January 2003 and May 2007 were studied. A Groupe d'Etudes des Lymphomes de l'Adulte/European Organisation for Research and Treatment of Cancer RCT, to compare ABVD (doxorubicin, bleomycin, vinblastine, dacarbazine) with increased-dose BEACOPP (bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, prednisone), was open for recruitment. Noninclusion criteria and physician's reasons for non-recruitment were prospectively recorded. The reasons for patient's refusal were collected retrospectively. Logistic regression analyses were carried out in order to identify factors predicting inclusion. RESULTS: A total of 102 patients were diagnosed, among whom 51% were included. Seven patients were ineligible, 22 refused to participate, and 21 were not enrolled due to the physician's decision. Main reasons for patients' refusal were standard treatment preference and concerns about experimental arm toxicity, mainly infertility risk. Conditions that could hamper accurate follow-up and toxicity concerns accounted for most of the physicians' reasons. Adverse prognostic factors [B symptoms (odds ratio, OR = 5.35) and international prognostic score > or =3 (OR = 2.69)] were independently associated with inclusion. CONCLUSION: Despite an attractive protocol, only 51% of patients were included. It highlights concerns about selection of patients and the difficulty to obtain informed consent with better prognostic profile patients.
Subject(s)
Hodgkin Disease/psychology , Patient Selection , Randomized Controlled Trials as Topic/methods , Treatment Refusal , Adolescent , Adult , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Attitude of Health Personnel , Female , Hodgkin Disease/drug therapy , Hodgkin Disease/pathology , Humans , Male , Middle Aged , Neoplasm Staging , Physician's Role , Randomized Controlled Trials as Topic/psychologyABSTRACT
We investigated the genetic structure of populations of Guianan harlequin toads (genus Atelopus) and their evolutionary affinities to extra-Guianan congeners. Phylogenetic analysis of mitochondrial cytochrome b (cyt b) and NADH dehydrogenase subunit 2 (ND2) gene sequences produced well-supported clades largely corresponding to the four recognized taxa in the Guianas (Atelopus spumarius hoogmoedi, Atelopus spumarius barbotini, Atelopus franciscus, and Atelopus flavescens). Our findings suggest that the Guianan A. spumarius represent distinct evolutionary lineages that merit distinction from Amazonian conspecifics, and that the status of A. flavescens and A. franciscus is somewhat less clear. Approximately 69% of the observed genetic variation is accounted for by differences between these four recognized taxa. Coalescent-based estimates of gene flow between taxa suggest that these lineages are largely isolated from one another. Negligible rates of migration between populations and significant divergence within such close proximity suggests that although the region inhabited by these taxa is almost entirely undisturbed, significant habitat heterogeneity exists as to have produced a remarkable diversification of Atelopus within the eastern Guiana Shield. These results contradict the commonly held view of the Guiana Shield as a 'refuge' whose stability during late Tertiary and Quaternary climatic fluctuations served as a biotic reservoir. Instead, we provide evidence that climatic fluctuations during this time had a diversifying effect within the Guianan region.
Subject(s)
Anura/genetics , Animals , Cytochromes b/chemistry , Cytochromes b/genetics , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics , French Guiana , Genetic Variation , Guyana , Phylogeny , Polymerase Chain Reaction/veterinary , Population Dynamics , Sequence Analysis, DNA , Suriname , Tropical ClimateABSTRACT
A new member of the genus Osteocephalus is described from the Pakaraima mountains of western Guyana. This species is the smallest known member of the genus and is probably closely related to O. subtilis. Both share a small size (less than 40 mm snout-vent length), large and bulgy eyes directed somewhat rostrally, green bones, smooth and brownish dorsal skin, relatively short and truncate snout, small tympanum, subgular and laterally expanded vocal sac, poorly developed subarticular and supernumerary tubercles, a supra-anal glandular ridge, and cream-white venter and subocular region. The new species can be distinguished from O. subtilis by the Buff iris (vs black), smaller overall size (32.7 vs 35.8-38.8 mm snout-vent length), relatively larger toe disks, and less developed foot webbing. The cranium of the new species is well ossified, relatively reduced in width between the orbits, without an exposed frontoparietal fontanelle and with the anterior arm of the squamosal extending to about half the distance to the maxillary. The vocal sac is subgularly poorly developed and possess lateral extensions to the area behind the jaw angles. Well developed supraocular and suprasquamosal cartilages give support to the enlarged eyes of this species.