Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 12(1): 4800, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35314739

ABSTRACT

The Northern Humboldt Current System sustains one of the most productive fisheries in the world. However, climate change is anticipated to negatively affect fish production in this region over the next few decades, and detailed analyses for many fishery resources are unavailable. We implemented a trait-based Climate Vulnerability Assessment based on expert elicitation to estimate the relative vulnerability of 28 fishery resources (benthic, demersal, and pelagic) to the impacts of climate change by 2055; ten exposure factors (e.g., temperature, salinity, pH, chlorophyll) and 13 sensitivity attributes (biological and population-level traits) were used. Nearly 36% of the species assessed had "high" or "very high" vulnerability. Benthic species were ranked the most vulnerable (gastropod and bivalve species). The pelagic group was the second most vulnerable; the Pacific chub mackerel and the yellowfin tuna were amongst the most vulnerable pelagic species. The demersal group had the relatively lowest vulnerability. This study allowed identification of vulnerable fishery resources, research and monitoring priorities, and identification of the key exposure factors and sensitivity attributes which are driving that vulnerability. Our findings can help fishery managers incorporate climate change into harvest level and allocation decisions, and assist stakeholders plan for and adapt to a changing future.


Subject(s)
Climate Change , Fisheries , Animals , Conservation of Natural Resources , Ecosystem , Fishes
3.
Conserv Physiol ; 8(1): coaa065, 2020.
Article in English | MEDLINE | ID: mdl-32843966

ABSTRACT

Predation risk can strongly shape prey ecological traits, with specific anti-predator responses displayed to reduce encounters with predators. Key environmental drivers, such as temperature, can profoundly modulate prey energetic costs in ectotherms, although we currently lack knowledge of how both temperature and predation risk can challenge prey physiology and ecology. Such uncertainties in predator-prey interactions are particularly relevant for marine regions experiencing rapid environmental changes due to climate change. Using the octopus (Octopus maorum)-spiny lobster (Jasus edwardsii) interaction as a predator-prey model, we examined different metabolic traits of sub adult spiny lobsters under predation risk in combination with two thermal scenarios: 'current' (20°C) and 'warming' (23°C), based on projections of sea-surface temperature under climate change. We examined lobster standard metabolic rates to define the energetic requirements at specific temperatures. Routine metabolic rates (RMRs) within a respirometer were used as a proxy of lobster activity during night and day time, and active metabolic rates, aerobic scope and excess post-exercise oxygen consumption were used to assess the energetic costs associated with escape responses (i.e. tail-flipping) in both thermal scenarios. Lobster standard metabolic rate increased at 23°C, suggesting an elevated energetic requirement (39%) compared to 20°C. Unthreatened lobsters displayed a strong circadian pattern in RMR with higher rates during the night compared with the day, which were strongly magnified at 23°C. Once exposed to predation risk, lobsters at 20°C quickly reduced their RMR by ~29%, suggesting an immobility or 'freezing' response to avoid predators. Conversely, lobsters acclimated to 23°C did not display such an anti-predator response. These findings suggest that warmer temperatures may induce a change to the typical immobility predation risk response of lobsters. It is hypothesized that heightened energetic maintenance requirements at higher temperatures may act to override the normal predator-risk responses under climate-change scenarios.

4.
Article in English | MEDLINE | ID: mdl-28260875

ABSTRACT

BACKGROUND AND OBJECTIVE: In chronic obstructive pulmonary disease (COPD), accessory respiratory muscles are recruited as a compensatory adaptation to changes in respiratory mechanics. This results in shortening and overactivation of these and other muscles. Manual therapy is increasingly being investigated as a way to alleviate these changes. The aim of this study was to measure the immediate effect on lung function of a soft tissue manual therapy protocol (STMTP) designed to address changes in the accessory respiratory muscles and their associated structures in patients with severe COPD. METHODS: Twelve medically stable patients (n=12) with an existing diagnosis of severe COPD (ten: GOLD Stage III and two: GOLD Stage IV) were included. Residual volume, inspiratory capacity and oxygen saturation (SpO2) were recorded immediately before and after administration of the STMTP. A Student's t-test was used to determine the effect of the manual therapy intervention (P<0.05). RESULTS: The mean age of the patients was 62.4 years (range 46-77). Nine were male. Residual volume decreased from 4.5 to 3.9 L (P=0.002), inspiratory capacity increased from 2.0 to 2.1 L (P=0.039) and SpO2 increased from 93% to 96% (P=0.001). CONCLUSION: A single application of an STMTP appears to have the potential to produce immediate clinically meaningful improvements in lung function in patients with severe and very severe COPD.


Subject(s)
Lung/physiopathology , Pulmonary Disease, Chronic Obstructive/therapy , Respiratory Muscles/physiopathology , Therapy, Soft Tissue , Aged , Chile , Female , Humans , Lung Volume Measurements , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/physiopathology , Recovery of Function , Severity of Illness Index , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...