Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Drugs ; 21(3)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36976234

ABSTRACT

In this work, the photochemical reduction method was used at 440 or 540 nm excitation wavelengths to optimize the deposition of silver nanoparticles on the diatom surface as a potential DNA biosensor. The as-synthesized nanocomposites were characterized by ultraviolet-visible spectroscopy (UV-Vis), Fourier transforms infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), fluorescence microscopy, and Raman spectroscopy. Our results revealed a 5.5-fold enhancement in the fluorescence response of the nanocomposite irradiated at 440 nm with DNA. The enhanced sensitivity comes from the optical coupling of the guided-mode resonance of the diatoms and the localized surface plasmon of the silver nanoparticles interacting with the DNA. The advantage of this work involves the use of a low-cost green method to optimize the deposition of plasmonic nanoparticles on diatoms as an alternative fabrication method for fluorescent biosensors.


Subject(s)
Diatoms , Metal Nanoparticles , Metal Nanoparticles/chemistry , Silver/chemistry , Spectrum Analysis, Raman , Spectroscopy, Fourier Transform Infrared
2.
ACS Omega ; 7(50): 46745-46755, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36570286

ABSTRACT

Optimizing the antibacterial properties of nanocomposites is a fundamental challenge for many biomedical applications. Here, we study how we may optimize the antibacterial activity of narrow-sized anisotropically flat silver nanoprisms (S-NPs) on graphene oxide (GO) against Escherichia coli. To do so, we transformed silver nanoparticles (AgNPs) into S-NPs and anchored them to GO via a facile and low-cost photochemical reduction method by varying the irradiation wavelength during the synthesis process in the visible range (440 to 650 nm and white light). We performed a physicochemical characterization of the resulting S-NP/GO nanocomposite using a combination of UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Our results reveal a synergistic effect between the silver nanoprism and the oxygen functional groups of the GO surface. The antibacterial activity of the S-NPs/GO nanocomposite shows a significantly higher 53% inhibition efficiency after being irradiated with a 540 nm wavelength light source, compared to AgNPs with a 1% inhibition efficiency, respectively. In so doing, we have demonstrated the utility of a low-cost photoreduction method to control the structural properties of silver nanoprism on GO and, in this way, enhance the antibacterial properties of the nanocomposite. These results should be of great interest in a wide range of biomedical applications and medical devices.

3.
Environ Res ; 212(Pt C): 113470, 2022 09.
Article in English | MEDLINE | ID: mdl-35588779

ABSTRACT

Glyphosate is one of the most widely used herbicides globally, and there are several concerns about its environmental impact. In this work, we revealed the molecular interaction between chitosan, graphene, and CoFe2O4 nanoparticles with commercial glyphosate. The binding interaction was studied by Fourier transformed infrared spectroscopy (FTIR), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The structural and magnetic properties were characterized using scanning electron microscopy (SEM) and vibrating-sample magnetometry (VSM). To quantify the removal of glyphosate from water, UV-vis spectroscopy was used. Our results demonstrate the strong interaction between glyphosate with the components of the nanocomposite by the coordination through the phosphate and carboxylic groups and a complex formation with the nanoparticles. The advantage of this work is the use of a low-cost nanocomposite as bioadsorbent and the understanding of the binding interactions for glyphosate removal.


Subject(s)
Chitosan , Graphite , Nanocomposites , Chitosan/chemistry , Glycine/analogs & derivatives , Graphite/chemistry , Nanocomposites/chemistry , Spectroscopy, Fourier Transform Infrared , Glyphosate
4.
Mater Sci Eng C Mater Biol Appl ; 123: 112018, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33812636

ABSTRACT

The use of natural diatoms is currently a topic of interest for therapeutic applications due to its facilities, low cost, and biocompatibility. Here, we report the chemical modification of diatoms Aulacoseria genus microalgae-derived biosilica from Guayllabamba - Ecuador decorated with gold nanoparticles by In-situ and Ex-situ methods to study the in vitro gentamicin loading and release properties in simulated body fluid (SBF). Successful decoration of the diatoms and loaded with gentamicin was confirmed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Raman spectroscopy and Fluorescence Microscopy. We follow the In-vitro drug release by using Ultraviolet-Visible Spectroscopy (UV-vis). Our results revealed that diatoms decorated with gold nanoparticles using the Ex-situ method (Au/CTAB-Diatom) showed a faster release reaching a maximum of 93% in 10 days and a lower loading rate, while the samples decorated by the In-situ method presented longer and slower release behavior. Fluorescence properties were enhanced after the gentamicin loaded. The advantage of this work is the control of the structural and optical properties of diatoms decorated with gold nanoparticles for the gentamicin drug delivery.


Subject(s)
Diatoms , Metal Nanoparticles , Drug Liberation , Gentamicins , Gold , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
5.
Sci Rep ; 10(1): 19004, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33149153

ABSTRACT

Ecuador is one of the most affected countries, with the coronavirus disease 2019 (COVID-19) infection, in Latin America derived from an ongoing economic crisis. One of the most important methods for COVID-19 detection is the use of techniques such as real time RT-PCR based on a previous extraction/purification of RNA procedure from nasopharyngeal cells using functionalized magnetic nanoparticles (MNP). This technique allows the processing of ~ 10,000 tests per day in private companies and around hundreds per day at local Universities guaranteeing to reach a wide range of the population. However, the main drawback of this method is the need for specialized MNP with a strong negative charge for the viral RNA extraction to detect the existence of the SARS-CoV-2 virus. Here we present a simplified low cost method to produce 10 g of nanoparticles in 100 mL of solution that was scaled to one litter by parallelizing the process 10 times in just two days and allowing for the possibility of making ~ 50,000 COVID-19 tests. This communication helps in reducing the cost of acquiring MNP for diverse biomolecular applications supporting developing country budgets constraints and chemical availability specially during the COVID-19 International Health Emergency.


Subject(s)
Clinical Laboratory Techniques/methods , Costs and Cost Analysis , Magnetite Nanoparticles/chemistry , Reverse Transcriptase Polymerase Chain Reaction/methods , COVID-19 Testing , COVID-19 Vaccines , Coronavirus Infections/diagnosis , Developing Countries , Humans , Magnetite Nanoparticles/economics , RNA, Viral/chemistry , Reverse Transcriptase Polymerase Chain Reaction/economics
6.
Int J Biol Macromol ; 164: 3403-3410, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32858107

ABSTRACT

Blends of chitosan (CS) and polyvinylpyrrolidone (PVP) with cobalt ferrite nanoparticles (CoFe2O4) have the potential for use in several biomedical applications as drug delivery systems and for hyperthermia applications. Herein, we present a detailed study of the effect of chitosan and PVP on the structural, magnetic and specific absorption rate (SAR) properties of CoxFe3-xO4 (x = 0.25, 0.50, 0.75 and 1.00) as an effective heat nanomediator for hyperthermia. Structural characterization was carried out using X-ray diffraction (XRD), infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Magnetic properties as a function of the Co2+ content were studied using a vibrating sample magnetometer (VSM) at room temperature. Hyperthermia investigations were performed at 454 ±â€¯20 kHz with a magnetic field amplitude of 5.5 mT. CS-PVP coated nanoparticles at x = 1.00 show a maximum SAR of 386 W/g, while bare nanoparticles show a SAR of 270 W/g. The advantage of the designed nanoparticles coated system lies in the fact that the versatile blending of chitosan and PVP enhance the SAR properties for hyperthermia of cobalt ferrite nanoparticles and provide biocompatibility and stability to the samples.


Subject(s)
Chitosan/chemistry , Hyperthermia, Induced , Magnetic Iron Oxide Nanoparticles/chemistry , Polyvinyls/chemistry , Pyrrolidines/chemistry , Adsorption , Chemical Phenomena , Chemistry Techniques, Synthetic , Hyperthermia, Induced/methods , Magnetic Iron Oxide Nanoparticles/ultrastructure , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
7.
Sci Rep ; 9(1): 2642, 2019 02 25.
Article in English | MEDLINE | ID: mdl-30804400

ABSTRACT

Ecuadorian pottery is renowned for its beauty and the particularly rich colour of its pigments. However, a major challenge for art historians is the proper assessment of the provenance of individual pieces due to their lack of archaeological context. Of particular interest is the Jama-Coaque culture, which produced fascinating anthropomorphic and zoomorphic pottery from ca. 240 B.C. until the Spanish Conquest of 1532 A.D. in the coastal region of Ecuador. Using a combination of microscopic and spectroscopic techniques, i.e., transmission electron microscopy (TEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), energy-dispersive x-ray spectroscopy (EDX), and scanning electron microscopy (SEM); we are able to characterize these pieces. We have found several kinds of iron-oxide based nanostructures in all the colour pigments we investigated for the Jama-Coaque culture, suggesting the same unique volcanic source material was used for their clay. Such nanostructures were absent from the pigment samples studied from other contemporary coastal-Ecuadorian cultures, i.e., the Tumaco-La Tolita and Bahía cultures. In the yellow pigments of goethite we find carbon nanofibres, indicating these pigments were subjected to a thermal treatment. Finally, in the blue, green, and black pigments we detect modern pigments (phthalocyanine blue, lithopone, and titanium white), suggesting modern restoration. Our results demonstrate the power of TEM, Raman, FTIR, EDX, and SEM archaeometric techniques for characterizing pieces without a clear archaeological context. Furthermore, the characterization of nanostructures present in such pieces could be used as a possible fingerprint for a provenance study.

8.
Mater Sci Eng C Mater Biol Appl ; 78: 842-846, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28576057

ABSTRACT

Cobalt ferrite hollow spheres with chitosan (CoFe2O4/CS) were synthesized by two different approaches using the solvothermal method. The first approach involves in-situ incorporation of FeCl3:6H2O and CoNO3:6H2O in the solvothermal reaction (M1) and in second approach already prepared CoFe2O4 nanoparticles (NPs) using the thermal decomposition method was placed in the solvothermal reaction to form the hollow spheres (M2). Structural identification of the samples were characterized by Fourier transform infrared spectra (FTIR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analyses (DSC-TGA) and energy dispersive X-ray spectroscopy (EDX). The magnetic properties were evaluated using a vibrating sample magnetometer (VSM). The presence of chitosan on the hollow sphere was confirmed by FTIR. The XRD analyses proved that the synthesized samples were cobalt ferrite with spinel structure. The structure of the surface and the average particle size of the spheres were observed by SEM and TEM showing the nano scale of the CoFe2O4 component. Structural characterization demonstrating that chitosan does not affect the crystallinity, chemical composition, and magnetic properties of the CoFe2O4/CS. This work demonstrates that the CoFe2O4/CS prepared using the as synthesized CoFe2O4 NPs have better structural and magnetic properties.


Subject(s)
Cobalt/chemistry , Ferric Compounds/chemistry , Chitosan , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...