Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 14(4): e11299, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38654709

ABSTRACT

The threat from novel marine species introductions is a global issue. When non-native marine species are introduced to novel environments and become invasive, they can affect biodiversity, industry, ecosystem function, and both human and wildlife health. Isolated areas with sensitive or highly specialised endemic species can be particularly impacted. The global increase in the scope of tourism and other human activities, together with a rapidly changing climate, now put these remote ecosystems under threat. In this context, we analyse invasion pathways into South Georgia and the South Sandwich Islands (SGSSI) for marine non-native species via vessel biofouling. The SGSSI archipelago has high biodiversity and endemism, and has historically been highly isolated from the South American mainland. The islands sit just below the Polar Front temperature boundary, affording some protection against introductions. However, the region is now warming and SGSSI increasingly acts as a gateway port for vessel traffic into the wider Antarctic, amplifying invasion likelihood. We use remote Automatic Identification System vessel-tracking data over a 2-year period to map vessel movement and behaviour around South Georgia, and across the 'Scotia Sea', 'Magellanic' and northern 'Continental High Antarctic' ecoregions. We find multiple vessel types from locations across the globe frequently now enter shallow inshore waters and stop for prolonged periods (weeks/months) at anchor. Vessels are active throughout the year and stop at multiple port hubs, frequently crossing international waters and ecoregions. Management recommendations to reduce marine invasion likelihood within SGSSI include initiating benthic and hull monitoring at the identified activity/dispersion hubs of King Edward Point, Bay of Isles, Gold Harbour, St Andrews Bay and Stromness Bay. More broadly, regional collaboration and coordination is necessary at neighbouring international ports. Here vessels need increased pre- and post-arrival biosecurity assessment following set protocols, and improved monitoring of hulls for biofouling to pre-emptively mitigate this threat.

2.
Ecol Evol ; 13(9): e10513, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37701022

ABSTRACT

Biological invasions represent a growing threat to islands and their biodiversity across the world. The isolated sub-Antarctic island of South Georgia in the South Atlantic Ocean is a highly protected area that relies on effective biosecurity including prevention, surveillance and eradication to limit the risk of biological invasions. Based on an opportunistic field discovery, we provide the first report of an introduced ladybird beetle on South Georgia. All specimens discovered belong to the Eurasian species Coccinella undecimpunctata Linnaeus (1758) (Coleoptera: Coccinellidae). Tens of individuals of both sexes were discovered at a single location, indicating that the species may already be established on South Georgia. Transport connectivity with this site suggests that the species most likely arrived recently from the Falkland Islands as a stowaway on a ship. We discuss the implications of our discovery for the continued development of South Atlantic biosecurity.

3.
Sci Rep ; 13(1): 12046, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37491385

ABSTRACT

The paradigm of past climate-driven range shifts structuring the distribution of marine intraspecific biodiversity lacks replication in biological models exposed to comparable limiting conditions in independent regions. This may lead to confounding effects unlinked to climate drivers. We aim to fill in this gap by asking whether the global distribution of intraspecific biodiversity of giant kelp (Macrocystis pyrifera) is explained by past climate changes occurring across the two hemispheres. We compared the species' population genetic diversity and structure inferred with microsatellite markers, with range shifts and long-term refugial regions predicted with species distribution modelling (SDM) from the last glacial maximum (LGM) to the present. The broad antitropical distribution of Macrocystis pyrifera is composed by six significantly differentiated genetic groups, for which current genetic diversity levels match the expectations of past climate changes. Range shifts from the LGM to the present structured low latitude refugial regions where genetic relics with higher and unique diversity were found (particularly in the Channel Islands of California and in Peru), while post-glacial expansions following ~ 40% range contraction explained extensive regions with homogenous reduced diversity. The estimated effect of past climate-driven range shifts was comparable between hemispheres, largely demonstrating that the distribution of intraspecific marine biodiversity can be structured by comparable evolutionary forces across the global ocean. Additionally, the differentiation and endemicity of regional genetic groups, confers high conservation value to these localized intraspecific biodiversity hotspots of giant kelp forests.


Subject(s)
Kelp , Macrocystis , Macrocystis/genetics , Ecosystem , Biodiversity , Forests , Climate Change , Kelp/genetics
4.
Biol Bull ; 244(1): 9-24, 2023 02.
Article in English | MEDLINE | ID: mdl-37167618

ABSTRACT

AbstractMembers of the sea anemone genus Metridium are abundant in temperate rocky habitats and fouling communities. Their biogeographic history is expected to reflect changes in currents and habitats that have influenced benthic communities, such as the climate-influenced changes that occurred during the Last Glacial Maximum. More recently, however, anthropogenic influences such as shipping transportation and the creation of artificial habitat have altered and affected the composition of modern-day marine communities. Here we use sequence-capture data to examine the genetic structure of Metridium across its shallow-water distribution to (1) evaluate species boundaries within Metridium, (2) elucidate the dispersal history of Metridium between and among oceans, and (3) assess the influence of anthropogenic movement on modern-day populations. We find strong evidence for two species within Metridium: M. farcimen and M. senile. Dispersal from the Pacific to the Atlantic included a subsequent isolation of a small population in or above the Bering Sea, which has presumably moved southward. Within the native range of M. senile, admixture is prevalent even between oceans as a result of anthropogenic activities. The nonnative populations in Chile and the Falkland Islands came from at least two distinct introduction events originating from both coasts of the United States in the North Pacific and North Atlantic Oceans. Hybridization between M. senile and M. farcimen is documented as occurring in anthropogenically influenced habitats. The heavy influence from anthropogenic activities will continue to impact our understanding of marine organisms, particularly within the native range and for those that are easily transported across long distances.


Subject(s)
Sea Anemones , Animals , Oceans and Seas , Ecosystem
5.
Adv Mar Biol ; 94: 1-68, 2023.
Article in English | MEDLINE | ID: mdl-37244676

ABSTRACT

The Falkland Islands marine environment host a mix of temperate and subantarctic species. This review synthesizes baseline information regarding ontogenetic migration patterns and trophic interactions in relation to oceanographic dynamics of the Falkland Shelf, which is useful to inform ecosystem modelling. Many species are strongly influenced by regional oceanographic dynamics that bring together different water masses, resulting in high primary production which supports high biomass in the rest of the food web. Further, many species, including those of commercial interest, show complex ontogenetic migrations that separate spawning, nursing, and feeding grounds spatially and temporally, producing food web connections across space and time. The oceanographic and biological dynamics may make the ecosystem vulnerable to climatic changes in temperature and shifts in the surrounding area. The Falkland marine ecosystem has been understudied and various functional groups, deep-sea habitats and inshore-offshore connections are poorly understood and should be priorities for further research.


Subject(s)
Ecosystem , Food Chain , Seasons , Falkland Islands , Biomass
6.
Sci Adv ; 8(17): eabo6765, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35486736

ABSTRACT

Hamley et al. previously presented multiple lines of evidence that people were present in the Falkland Islands before Europeans and may have brought the now-extinct canid, Dusicyon australis. Stable isotope data reported by Clark et al. indicate that D. australis had a high-trophic, marine diet that terrestrialized following European arrival. This is consistent with our hypothesis of a human mutualism.

7.
J Fish Biol ; 100(5): 1158-1170, 2022 May.
Article in English | MEDLINE | ID: mdl-35174488

ABSTRACT

The Patagonian toothfish, Dissostichus eleginoides, is one of the largest predatory fishes inhabiting Southern Ocean waters spanning the Antarctic Polar Front (APF), a prominent biogeographic boundary restricting gene flow and driving species divergence between Antarctic and sub-Antarctic waters. In the light of emerging threats to toothfish conservation and sustainability, this study investigated genetic [mtDNA sequences and genome wide nuclear single nucleotide polymorphisms (SNPs)] and morphological data to critically evaluate the taxonomic status of toothfish north (Chile and Patagonian shelf) and south (South Georgia and South Sandwich Islands) of the APF. mtDNA revealed reciprocally monophyletic lineages on either side of the APF with coalescent analysis indicating these diverged during the Pleistocene. Integration with data from other sources suggests the Chilean/Patagonian lineage is endemic. SNP analysis confirmed restricted nuclear gene flow between both groups and revealed a consensus suite of positive outlier SNPs compatible with adaptive divergence between these groups. Finally, several morphological features permit unequivocal assignment of individuals to either of the clades. Based on the genetic, phenotypic and ecological divergence, the authors propose that toothfish on either side of the APF be recognised as distinct species, with the name D. eleginoides used for toothfish occurring in South American waters north of the APF and toothfish south of the APF being classified using the new name D. australis reflecting their southern distribution.


Subject(s)
Perciformes , Animals , Antarctic Regions , DNA, Mitochondrial/genetics , Genome , Genomics , Perciformes/genetics
8.
Zookeys ; 1127: 61-77, 2022.
Article in English | MEDLINE | ID: mdl-36760354

ABSTRACT

Littorinid snails are present in most coastal areas globally, playing a significant role in the ecology of intertidal communities. Laevilitorina is a marine gastropod genus distributed exclusively in the Southern Hemisphere, with 21 species reported from South America, the sub-Antarctic islands, Antarctica, New Zealand, Australia and Tasmania. Here, an updated database of 21 species generated from a combination of sources is presented: 1) new field sampling data; 2) published records; 3) the Global Biodiversity Information Facility (GBIF) and The Atlas of Living Australia (ALA), to provide a comprehensive description of the known geographic distribution of the genus and detailed occurrences for each of the 21 species. The database includes 813 records (occurrences), 53 from field sampling, 174 from the literature, 128 from GBIF, and 458 from ALA. West Antarctica had the highest species richness (8 species), followed by sub-Antarctic islands of New Zealand (4 species) and the south-east shelf of Australia (4 species). The provinces of Magellan, New Zealand South Island, and sub-Antarctic Islands of the Indian Ocean include two species each. This study specifically highlights reports of L.pygmaea and L.venusta, species that have been almost unrecorded since their description. Recent advances in molecular studies of L.caliginosa showed that this species does not correspond to a widely distributed taxon, but to multiple divergent lineages distributed throughout the Southern Ocean. Ongoing molecular and taxonomic studies are necessary for a better understanding of the diversity and biogeography of this genus.

9.
Sci Adv ; 7(44): eabh3803, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34705512

ABSTRACT

When Darwin visited the Falkland Islands in 1833, he noted the puzzling occurrence of the islands' sole terrestrial mammal, Dusicyon australis (or "warrah"). The warrah's origins have been debated, and prehistoric human transport was previously rejected because of a lack of evidence of pre-European human activity in the Falkland Islands. We report several lines of evidence indicating that humans were present in the Falkland Islands centuries before Europeans, including (i) an abrupt increase in fire activity, (ii) deposits of mixed marine vertebrates that predate European exploration by centuries, and (iii) a surface-find projectile point made of local quartzite. Dietary evidence from D. australis remains further supports a potential mutualism with humans. The findings from our study are consistent with the culture of the Yaghan (Yámana) people from Tierra del Fuego. If people reached the Falkland Islands centuries before European colonization, this reopens the possibility of human introduction of the warrah.

10.
Evol Appl ; 14(8): 2134-2144, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34429754

ABSTRACT

Biological invasions are important causes of biodiversity loss, particularly in remote islands. Brown trout (Salmo trutta) have been widely introduced throughout the Southern Hemisphere, impacting endangered native fauna, particularly galaxiid fishes, through predation and competition. However, due to their importance for sport fishing and aquaculture farming, attempts to curtail the impacts of invasive salmonids have generally been met with limited support and the best prospects for protecting native galaxiids is to predict where and how salmonids might disperse. We analysed 266 invasive brown trout from 14 rivers and ponds across the Falkland Islands as well as 32 trout from three potential source populations, using a panel of 592 single nucleotide polymorphisms (SNPs) and acoustic tagging, to ascertain their origins and current patterns of dispersal. We identified four genetically distinct clusters with high levels of genetic diversity and low admixture, likely reflecting the different origins of the invasive brown trout populations. Our analysis suggests that many trout populations in the Falklands may have originated from one of the donor populations analysed (River Wey). The highest genetic diversity was observed in the rivers with the greatest number of introductions and diverse origins, while the lowest diversity corresponded to a location without documented introductions, likely colonized by natural dispersal. High levels of gene flow indicated widespread migration of brown trout across the Falkland Islands, likely aided by anadromous dispersal. This is supported by data from acoustically tagged fish, three of which were detected frequently moving between two rivers ~26 km apart. Our results suggest that, without containment measures, brown trout may invade the last remaining refuges for the native endangered Aplochiton spp. We provide new insights into the origin and dispersal of invasive brown trout in the Falkland Islands that can pave the way for a targeted approach to limit their impact on native fish fauna.

11.
Ecol Appl ; 31(8): e02426, 2021 12.
Article in English | MEDLINE | ID: mdl-34309955

ABSTRACT

Static (fixed-boundary) protected areas are key ocean conservation strategies, and marine higher predator distribution data can play a leading role toward identifying areas for conservation action. The Falkland Islands are a globally significant site for colonial breeding marine higher predators (i.e., seabirds and pinnipeds). However, overlap between marine predators and Falkland Islands proposed Marine Managed Areas (MMAs) has not been quantified. Hence, to provide information required to make informed decisions regarding the implementation of proposed MMAs, our aims were to objectively assess how the proposed MMA network overlaps with contemporary estimates of marine predator distribution. We collated tracking data (1999-2019) and used a combination of kernel density estimation and model-based predictions of spatial usage to quantify overlap between colonial breeding marine predators and proposed Falkland Islands MMAs. We also identified potential IUCN Key Biodiversity Areas (pKBAs) using (1) kernel density based methods originally designed to identify Important Bird and Biodiversity Areas (IBAs) and (2) habitat preference models. The proposed inshore MMA, which extends three nautical miles from the Falkland Islands, overlapped extensively with areas used by colonial breeding marine predators. This reflects breeding colonies being distributed throughout the Falklands archipelago, and use being high adjacent to colonies due to central-place foraging constraints. Up to 45% of pKBAs identified via kernel density estimation were located within the proposed MMAs. In particular, the proposed Jason Islands Group MMA overlapped with pKBAs for three marine predator species, suggesting it is a KBA hot spot. However, tracking data coverage was incomplete, which biased pKBAs identified using kernel density methods, to colonies tracked. Moreover, delineation of pKBA boundaries were sensitive to the choice of smoothing parameter used in kernel density estimation. Delineation based on habitat model predictions for both sampled and unsampled colonies provided less biased estimates, and revealed 72% of the Falkland Islands Conservation Zone was likely a KBA. However, it may not be practical to consider such a large area for fixed-boundary management. In the context of wide-ranging marine predators, emerging approaches such as dynamic ocean management could complement static management frameworks such as MMAs, and provide protection at relevant spatiotemporal scales.


Subject(s)
Birds , Caniformia , Conservation of Natural Resources , Ecosystem , Animals , Aquatic Organisms , Biodiversity , Falkland Islands
12.
Sci Adv ; 6(43)2020 10.
Article in English | MEDLINE | ID: mdl-33097535

ABSTRACT

The coastal tussac (Poa flabellata) grasslands of the Falkland Islands are a critical seabird breeding habitat but have been drastically reduced by grazing and erosion. Meanwhile, the sensitivity of seabirds and tussac to climate change is unknown because of a lack of long-term records in the South Atlantic. Our 14,000-year multiproxy record reveals an ecosystem state shift following seabird establishment 5000 years ago, as marine-derived nutrients from guano facilitated tussac establishment, peat productivity, and increased fire. Seabird arrival coincided with regional cooling, suggesting that the Falkland Islands are a cold-climate refugium. Conservation efforts focusing on tussac restoration should include this terrestrial-marine linkage, although a warming Southern Ocean calls into question the long-term viability of the Falkland Islands as habitat for low-latitude seabirds.

14.
Sci Rep ; 9(1): 8517, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31186455

ABSTRACT

The Patagonian Shelf Large Marine Ecosystem supports high levels of biodiversity and endemism and is one of the most productive marine ecosystems in the world. Despite the important role marine predators play in structuring the ecosystems, areas of high diversity where multiple predators congregate remains poorly known on the Patagonian Shelf. Here, we used biotelemetry and biologging tags to track the movements of six seabird species and three pinniped species breeding at the Falkland Islands. Using Generalized Additive Models, we then modelled these animals' use of space as functions of dynamic and static environmental indices that described their habitat. Based on these models, we mapped the predicted distribution of animals from both sampled and unsampled colonies and thereby identified areas where multiple species were likely to overlap at sea. Maximum foraging trip distance ranged from 79 to 1,325 km. However, most of the 1,891 foraging trips by 686 animals were restricted to the Patagonian Shelf and shelf slope, which highlighted a preference for these habitats. Of the seven candidate explanatory covariates used to predict distribution, distance from the colony was retained in models for all species and negatively affected the probability of occurrence. Predicted overlap among species was highest on the Patagonian Shelf around the Falkland Islands and the Burdwood Bank. The predicted area of overlap is consistent with areas that are also important habitat for marine predators migrating from distant breeding locations. Our findings provide comprehensive multi-species predictions for some of the largest marine predator populations on the Patagonian Shelf, which will contribute to future marine spatial planning initiatives. Crucially, our findings highlight that spatially explicit conservation measures are likely to benefit multiple species, while threats are likely to impact multiple species.


Subject(s)
Aquatic Organisms/physiology , Breeding , Ecosystem , Oceans and Seas , Predatory Behavior/physiology , Animals , Area Under Curve , Falkland Islands , Geography , Telemetry
15.
Mar Pollut Bull ; 137: 695-701, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30503486

ABSTRACT

To date there is no gold standard for sampling microplastics. Zooplankton sampling methods, such as plankton and Neuston nets, are commonly used to estimate the concentrations of microplastics in seawater, but their ability to detect microplastics is limited by their mesh size. We compared different net-based sampling methods with different mesh sizes including bongo nets (>500 µm), manta nets (>300 µm) and plankton nets (>200 µm and >400 µm) to 1 litre bottle grabbed, filtered (0.45 µm) samples. Concentrations of microplastics estimated using net-based methods were ~3 orders of magnitude less than those estimated by 1 litre grab samples. Some parts of the world with low human populations, such as Ascension Island and the Falkland Islands, lack baseline data on microplastics. Using the bottle grab sampling method we found that microplastic litter was present at these remote locations and was comparable to levels of contamination in more populated coastal regions, such as the United Kingdom.


Subject(s)
Plastics/analysis , Seawater/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Plankton/chemistry
16.
Ecol Evol ; 7(11): 3992-4002, 2017 06.
Article in English | MEDLINE | ID: mdl-28616194

ABSTRACT

Conditions experienced during the nonbreeding period have profound long-term effects on individual fitness and survival. Therefore, knowledge of habitat use during the nonbreeding period can provide insights into processes that regulate populations. At the Falkland Islands, the habitat use of South American sea lions (Otaria flavescens) during the nonbreeding period is of particular interest because the population is yet to recover from a catastrophic decline between the mid-1930s and 1965, and nonbreeding movements are poorly understood. Here, we assessed the habitat use of adult male (n = 13) and juvenile male (n = 6) South American sea lions at the Falkland Islands using satellite tags and stable isotope analysis of vibrissae. Male South American sea lions behaved like central place foragers. Foraging trips were restricted to the Patagonian Shelf and were typically short in distance and duration (127 ± 66 km and 4.1 ± 2.0 days, respectively). Individual male foraging trips were also typically characterized by a high degree of foraging site fidelity. However, the isotopic niche of adult males was smaller than juvenile males, which suggested that adult males were more consistent in their use of foraging habitats and prey over time. Our findings differ from male South American sea lions in Chile and Argentina, which undertake extended movements during the nonbreeding period. Hence, throughout their breeding range, male South American sea lions have diverse movement patterns during the nonbreeding period that intuitively reflects differences in the predictability or accessibility of preferred prey. Our findings challenge the long-standing notion that South American sea lions undertake a winter migration away from the Falkland Islands. Therefore, impediments to South American sea lion population recovery likely originate locally and conservation measures at a national level are likely to be effective in addressing the decline and the failure of the population to recover.

17.
Mar Environ Res ; 126: 81-94, 2017 May.
Article in English | MEDLINE | ID: mdl-28258012

ABSTRACT

There are a number of remote archipelagos distributed between 45 and 60 °S. The biota of these islands provide useful information to describe and understand patterns in biodiversity and biogeography as well as potential impacts of climate change on marine ecosystems. They are in key locations either side of the Polar Front but also have limited influence from human activities. Here we investigate one taxon, bryozoans, on South Atlantic shelf habitats of the Falkland (FI) and the sub-Antarctic island of South Georgia (SG). We present new data on spatial distribution in these islands, as well as an analysis of the bryozoological similarities between these and neighbouring regions. A total of 85 species of cheilostome bryozoans (351 samples) were found, belonging to 33 genera, including 18 potentially new genera and 23 new species. Remarkably 65% and 41% of species were reported for the first time at FI and SG, respectively. The highest and the lowest value of species richness and species/genus ratio were found at East (EFI) and West Falkland (WFI), respectively, likely showing a tendency for stronger intrageneric competition. New data from this study were jointly analysed with data from the literature and existing databases, revealing new bathymetric ranges in 32 species. The biogeographic affinities of the bryozoans found give further evidence of the hypothesis of sequential separation of Gondwana and support the changing concept that although the Polar Front acts as a circumpolar biogeographic barrier it is not as impermeable as originally thought. Potential dispersal mechanisms are also discussed.


Subject(s)
Biodiversity , Bryozoa/physiology , Climate Change , Animals , Antarctic Regions , Bryozoa/classification , Ecosystem
18.
PLoS One ; 11(9): e0161963, 2016.
Article in English | MEDLINE | ID: mdl-27598461

ABSTRACT

Glacial episodes of the Quaternary, and particularly the Last Glacial Maximum (LGM) drastically altered the distribution of the Southern-Hemisphere biota, principally at higher latitudes. The irregular coastline of Patagonia expanding for more than 84.000 km constitutes a remarkable area to evaluate the effect of Quaternary landscape and seascape shifts over the demography of near-shore marine benthic organisms. Few studies describing the biogeographic responses of marine species to the LGM have been conducted in Patagonia, but existing data from coastal marine species have demonstrated marked genetic signatures of post-LGM recolonization and expansion. The kelp-dweller limpet Nacella mytilina is broadly distributed along the southern tip of South America and at the Falkland/Malvinas Islands. Considering its distribution, abundance, and narrow bathymetry, N. mytilina represents an appropriate model to infer how historical and contemporary processes affected the distribution of intraspecific genetic diversity and structure along the southern tip of South America. At the same time, it will be possible to determine how life history traits and the ecology of the species are responsible for the current pattern of gene flow and connectivity across the study area. We conducted phylogeographic and demographic inference analyses in N. mytilina from 12 localities along Pacific Patagonia (PP) and one population from the Falkland/Malvinas Islands (FI). Analyses of the mitochondrial gene COI in 300 individuals of N. mytilina revealed low levels of genetic polymorphism and the absence of genetic differentiation along PP. In contrast, FI showed a strong and significant differentiation from Pacific Patagonian populations. Higher levels of genetic diversity were also recorded in the FI population, together with a more expanded genealogy supporting the hypothesis of glacial persistence of the species in these islands. Haplotype genealogy, and mismatch analyses in the FI population recognized an older and more complex demographic history than in PP. Demographic reconstructions along PP suggest a post-LGM expansion process (7.5 ka), also supported by neutrality tests, mismatch distribution and maximum parsimony haplotype genealogies. Migration rate estimations showed evidence of asymmetrical gene flow from PP to FI. The absence of genetic differentiation, the presence of a single dominant haplotype, high estimated migration rates, and marked signal of recent demographic growth, support the hypothesis of rapid post-glacial expansion in N. mytilina along PP. This expansion could have been sustained by larval and rafting-mediated dispersal of adults from northernmost populations following the Cape Horn Current System. Marked genetic differentiation between PP and FI could be explained through differences in their respective glacial histories. During the LGM, Pacific Patagonia (PP) was almost fully covered by the Patagonian Ice Sheet, while sheet coverage in the FI ice was restricted to small cirques and valleys. As previously recorded in the sister-species N. magellanica, the FI rather than represent a classical glacial refugium for N. mytilina, seems to represent a sink area and/or a secondary contact zone. Accordingly, historical and contemporary processes, contrasting glacial histories between the analyzed sectors, as well as life history traits constitute the main factors explaining the current biogeographical patterns of most shallow Patagonian marine benthic organisms.


Subject(s)
Electron Transport Complex IV/genetics , Gastropoda/genetics , Gene Flow , Phylogeny , Animals , Biological Evolution , Falkland Islands , Gastropoda/classification , Genetic Variation , Haplotypes , Phylogeography , Reproductive Isolation , South America
19.
PLoS One ; 11(1): e0145479, 2016.
Article in English | MEDLINE | ID: mdl-26727274

ABSTRACT

Trace element signatures of otolith edges and cores from 335 austral hake (Merluccius autralis) were analysed using LA-ICPMS from samples collected in Chilean and Falkland Islands' waters, in order to provide potential insights into stock discrimination and migrations. Fish were caught in two locations in Chile and four locations in the south-west of the Falkland Islands Shelf. Univariate and multivariate analyses of trace element signatures in the edges of otoliths, representing adult fish, were not able to distinguish between samples collected in Chile and the Falkland Islands. Cluster analyses based on Ward's similarity/distance metric suggested that it was possible to identify two groups from core signatures. Further analyses of this perceived clustering of the core concentrations revealed that this was largely due to the wide spread of Sr/Ca ratios in the otoliths' cores. Gaussian finite mixtures using MCMC methods confirmed that Sr/Ca ratios form two separate distributions with significantly different mean values while concentrations of other elements showed no evidence of the presence of two or more distributions. The results suggest that there is only one spawning stock of austral hake with spawning situated in and around the Chilean fjords (43°30'S- 47°S) and the variation in Sr/Ca ratios likely suggests complex salinity structuring in this area.


Subject(s)
Fishes/metabolism , Larva/growth & development , Reproduction , Trace Elements/metabolism , Animals , Fishes/growth & development , Fishes/physiology , South America
20.
Rapid Commun Mass Spectrom ; 29(7): 667-74, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-26212285

ABSTRACT

RATIONALE: 1In shelf and coastal ecosystems, planktonic and benthic trophic pathways differ in their carbon stable isotope ratios (δ(13)C values) and nitrogen stable isotope ratios (δ(15)N values) and they increase predictably with trophic level. Stable isotope data are therefore used as a tool to study food webs in shelf and coastal ecosystems, and to assess the diets and foraging behaviour of predators. However, spatial differences and temporal changes in prevailing environmental conditions and prey abundance may lead to considerable heterogeneity in stable isotope values measured in focal animal species. METHODS: Here we assess spatial and temporal variability of δ(13)C and δ(15)N values in tissue samples of fish, squid and crustacean species captured over three years during research cruises close to the Falkland Islands, Southwest Atlantic. RESULTS: Both in δ(15)N values and especially in δ(13)C values, intra-species differences were large and often exceeded inter-species differences. Spatial patterns were weak, albeit statistically significant. The distribution of δ(13)C values was related to latitude, while the δ(15)N values varied with longitude. The distance from the coast and depth of catch influenced both δ(13)C and δ(15)N values. However, the importance of temporal variability greatly exceeded that of spatial variability. In addition to a moderate overall seasonal effect, we found that species differed strongly in their specific seasonal changes. CONCLUSIONS: Seasonal differences in the relative position of species or species groups in the C-N isotope space suggest changes in the utilisation of planktonic vs. benthic trophic pathways, indicating flexible foraging strategies in response to variable environmental conditions. These seasonal differences should be taken into account when analysing higher trophic level feeding ecology with stable isotope analysis.


Subject(s)
Aquatic Organisms/chemistry , Carbon Isotopes/analysis , Food Chain , Nitrogen Isotopes/analysis , Animals , Aquatic Organisms/metabolism , Aquatic Organisms/physiology , Crustacea/physiology , Decapodiformes/physiology , Fishes/physiology , Mass Spectrometry , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...