Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Appl Fluoresc ; 6(1): 012001, 2017 12 21.
Article in English | MEDLINE | ID: mdl-28914610

ABSTRACT

J-aggregates are fascinating fluorescent nanomaterials formed by highly ordered assembly of organic dyes with the spectroscopic properties dramatically different from that of single or disorderly assembled dye molecules. They demonstrate very narrow red-shifted absorption and emission bands, strongly increased absorbance together with the decrease of radiative lifetime, highly polarized emission and other valuable features. The mechanisms of their electronic transitions are understood by formation of delocalized excitons already on the level of several coupled monomers. Cyanine dyes are unique in forming J-aggregates over the broad spectral range, from blue to near-IR. With the aim to inspire further developments, this review is focused on the optical characteristics of J-aggregates in connection with the dye structures and on their diverse already realized and emerging applications.

2.
Phys Chem Chem Phys ; 15(20): 7666-78, 2013 May 28.
Article in English | MEDLINE | ID: mdl-23591769

ABSTRACT

Polymethine dyes (PDs) with absorption bands in the near-infrared region undergo symmetry breaking in polar solvents. To investigate how symmetry breaking affects nonlinear optical responses of PDs, an extensive and challenging experimental characterization of a cationic 2-azaazulene polymethine dye, including linear absorption, fluorescence, two-photon absorption and excited-state absorption, has been performed in two solvents with different polarity. Based on this extensive set of experimental data, a three-electronic-state model, accounting for the coupling of electronic degrees of freedom to molecular vibrations and polar solvation, has been reliably parameterized and validated for this dye, fully rationalizing optical spectra in terms of spectral position, intensities and bandshapes. In low-polarity solvents where the dye is mainly in its symmetric form, a nominally forbidden two-photon absorption band is observed, due to a vibronic activation mechanism. Inhomogeneous broadening plays a major role in polar solvents: absorption spectra represent the weighted sum of contributions from states with a variable amount of symmetry breaking, leading to a complex evolution of linear and nonlinear optical spectra with solvent polarity. In more polar solvents, the dominant role of the asymmetric form leads to the activation of two-photon absorption as a result of the symmetry lowering. The subtle interplay between the two mechanisms for two-photon absorption activation, vibronic coupling and polar solvation, can be fully accounted for within the proposed microscopic model allowing a detailed interpretation of the optical spectra of PDs.


Subject(s)
Aza Compounds/chemistry , Azulenes/chemistry , Fluorescent Dyes/chemistry , Indoles/chemistry , Photons , Quantum Theory , Molecular Structure , Solubility , Spectrum Analysis
4.
J Am Chem Soc ; 127(39): 13522-9, 2005 Oct 05.
Article in English | MEDLINE | ID: mdl-16190715

ABSTRACT

Incorporation of a tailor-made size-restricted dithia-aza-oxa macrocycle, 1-oxa-4,10-dithia-7-aza-cyclododecane, via a phenyl linker into two fluorescent sensor molecules with electronically decoupled, rigidly fixed, and sterically preoriented architectures, a 1,3,5-triaryl-Delta2-pyrazoline and a meso-substituted boron-dipyrromethene (BDP), yields amplified fluorescence in the red-visible spectral range upon binding of Fe(III) ions. The response to Fe(III) and potentially interfering metal ions is studied in highly polar aprotic and protic solvents for both probes as well as in neat and buffered aqueous solution for one of the sensor molecules, the BDP derivative. In organic solvents, the fluorescence of both indicators is quenched by an intramolecular charge or electron transfer in the excited state and coordination of Fe(III) leads to a revival of their fluorescence without pronounced spectral shifts. Most remarkably, the unbound BDP derivative shows dual emission in water and can be employed for the selective ratiometric signaling of Fe(III) in buffered aqueous solutions.

5.
Chem Commun (Camb) ; (17): 1946-7, 2004 Sep 07.
Article in English | MEDLINE | ID: mdl-15340614

ABSTRACT

A charge transfer-type fluorescent molecular sensor consisting of a bisamidopyridine receptor and two styryl base chromophores shows H(2)PO(4)(-) and acetate-enhanced fluorescence due to the conversion of weak intramolecular hydrogen bonds into strong ones in the host-guest ensemble.

SELECTION OF CITATIONS
SEARCH DETAIL
...