Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cosmet Investig Dermatol ; 16: 581-591, 2023.
Article in English | MEDLINE | ID: mdl-36923693

ABSTRACT

Objective: The goal of this study was to compare the unit-to-unit biological activity of the vacuum-dried formulation of prabotulinumtoxinA (prabotA) and onabotulinumtoxinA (onabotA) in preclinical assays. Methods: Reconstituted 100 U vials of prabotA and onabotA were tested in 3 distinct assays: plate-capture light chain activity (PC-LCA), measuringlight chain enzymatic activity after recovery of toxin from reconstituted product using a proprietary toxin capture step; cell-based potency assay (CBPA), measuring the intoxication steps of binding, translocation, and light chain activity (synaptosomal-associated protein 25 [SNAP25] cleavage); and mouse Digit Abduction Score (DAS), evaluating muscle paresis. Each assay tested 3 separate prabotA and onabotA lots on several independent test dates. Results: Multiple orthogonal assays established that when assessed on a unit-to-unit basis, the biological activity of prabotA is lower than that of onabotA. In the PC-LCA and CBPA assays, onabotA displayed 1.51 ± 0.14-fold higher (mean ± SD) and 1.33 ± 0.07-fold higher (mean of pooled lots ± SEM) activity than prabotA, respectively. Similarly, the mouse DAS data showed that onabotA had 1.4 ± 0.1-fold higher (mean ± SEM) potency than prabotA. Results of all 3 assays demonstrated differences in potency, efficacy, and duration of action between onabotA and prabotA on a unit-to-unit basis. Conclusion: Preclinical assays established differences in the biological activity of onabotA and prabotA, supporting that the units of biological activity are not interchangeable.

2.
Sci Rep ; 12(1): 9956, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35705606

ABSTRACT

The botulinum neurotoxin serotype A (BoNT/A) cuts a single peptide bond in SNAP25, an activity used to treat a wide range of diseases. Reengineering the substrate specificity of BoNT/A's protease domain (LC/A) could expand its therapeutic applications; however, LC/A's extended substrate recognition (≈ 60 residues) challenges conventional approaches. We report a directed evolution method for retargeting LC/A and retaining its exquisite specificity. The resultant eight-mutation LC/A (omLC/A) has improved cleavage specificity and catalytic efficiency (1300- and 120-fold, respectively) for SNAP23 versus SNAP25 compared to a previously reported LC/A variant. Importantly, the BoNT/A holotoxin equipped with omLC/A retains its ability to form full-length holotoxin, infiltrate neurons, and cleave SNAP23. The identification of substrate control loops outside BoNT/A's active site could guide the design of improved BoNT proteases and inhibitors.


Subject(s)
Botulinum Toxins, Type A , Clostridium botulinum , Peptide Hydrolases , Protein Engineering , Botulinum Toxins, Type A/chemistry , Catalysis , Catalytic Domain , Clostridium botulinum/enzymology , Clostridium botulinum/metabolism , Protein Engineering/methods , Substrate Specificity
3.
Pain ; 162(9): 2418-2427, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34448754

ABSTRACT

ABSTRACT: OnabotulinumtoxinA (BoNT-A) is an Food and Drug Administration-approved, peripherally acting preventive migraine drug capable of inhibiting meningeal nociceptors. Expanding our view of how else this neurotoxin attenuates the activation of the meningeal nociceptors, we reasoned that if the stimulus that triggers the activation of the nociceptor is lessened, the magnitude and/or duration of the nociceptors' activation could diminish as well. In the current study, we further examine this possibility using electrocorticogram recording techniques, immunohistochemistry, and 2-photon microscopy. We report (1) that scalp (head) but not lumbar (back) injections of BoNT-A shorten the period of profound depression of spontaneous cortical activity that follows a pinprick-induced cortical spreading depression (CSD); (2) that neither scalp nor lumbar injections prevent the induction, occurrence, propagation, or spreading velocity of a single wave of CSD; (3) that cleaved SNAP25-one of the most convincing tools to determine the anatomical targeting of BoNT-A treatment-could easily be detected in pericranial muscles at the injection sites and in nerve fibers of the intracranial dura, but not within any cortical area affected by the CSD; (4) that the absence of cleaved SNAP25 within the cortex and pia is unrelated to whether the blood-brain barrier is intact or compromised; and (5) that BoNT-A does not alter vascular responses to CSD. To the best of our knowledge, this is the first report of peripherally applied BoNT-A's ability to alter a neuronal function along a central nervous system pathway involved in the pathophysiology of migraine.


Subject(s)
Botulinum Toxins, Type A , Cortical Spreading Depression , Animals , Blood-Brain Barrier , Nociceptors , Rats , Rats, Sprague-Dawley
4.
Proc Natl Acad Sci U S A ; 104(20): 8269-74, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17494769

ABSTRACT

Type I IFNs are unusually pleiotropic cytokines that bind to a single heterodimeric receptor and have potent antiviral, antiproliferative, and immune modulatory activities. The diverse effects of the type I IFNs are of differential therapeutic importance; in cancer therapy, an enhanced antiproliferative effect may be beneficial, whereas in the therapy of viral infections (such as hepatitis B and hepatitis C), the antiproliferative effects lead to dose limiting bone marrow suppression. Studies have shown that various members of the natural IFN-alpha family and engineered variants, such as IFN-con1, vary in the ratios between various IFN-mediated cellular activities. We used DNA shuffling to explore and confirm the hypothesis that one could simultaneously increase the antiviral and Th1-inducing activity and decrease the antiproliferative activity. We report IFN-alpha hybrids wherein the ratio of antiviral:antiproliferative and Th1-inducing: antiproliferative potencies are markedly increased with respsect to IFN-con1 (75- and 80-fold, respectively). A four-residue motif that overlaps with the IFNAR1 binding site and is derived by cross breeding with a pseudogene contributes significantly to this phenotype. These IFN-alphas have an activity profile that may result in an improved therapeutic index and, consequently, better clinical efficacy for the treatment of chronic viral diseases such as hepatitis B virus, human papilloma virus, HIV, or chronic hepatitis C.


Subject(s)
Chronic Disease/therapy , DNA Shuffling , Directed Molecular Evolution , Interferon-alpha/genetics , Virus Diseases/therapy , Amino Acid Motifs , Amino Acid Sequence , Animals , Antiviral Agents/pharmacology , CHO Cells , Cricetinae , Cricetulus , Gene Library , HeLa Cells , Humans , Interferon-alpha/chemistry , Interferon-alpha/pharmacology , Models, Molecular , Molecular Sequence Data , Protein Binding , Pseudogenes , Th1 Cells/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...