Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Vet Res ; 55(1): 69, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822400

ABSTRACT

Current diagnostic methods for Johne's disease in cattle allow reliable detection of infections with Mycobacterium avium ssp. paratuberculosis (MAP) not before animals are 2 years of age. Applying a flow cytometry-based approach (FCA) to quantify a MAP-specific interferon-gamma (IFN-γ) response in T cell subsets, the present study sought to monitor the kinetics of the cell-mediated immune response in experimentally infected calves. Six MAP-negative calves and six calves, orally inoculated with MAP at 10 days of age, were sampled every 4 weeks for 52 weeks post-inoculation (wpi). Peripheral blood mononuclear cells (PBMC) were stimulated with either purified protein derivatives (PPD) or whole cell sonicates derived from MAP (WCSj), M. avium ssp. avium or M. phlei for 6 days followed by labeling of intracellular IFN-γ in CD4+ and CD8+ T cells. No antigen-specific IFN-γ production was detectable in CD8+ cells throughout and the responses of CD4+ cells of MAP-infected and control calves were similar up to 12 wpi. However, the mean fluorescence intensity (MFI) for the detection of IFN-γ in CD4+ cells after WCSj antigen stimulation allowed for a differentiation of animal groups from 16 wpi onwards. This approach had a superior sensitivity (87.8%) and specificity (86.8%) to detect infected animals from 16 wpi onwards, i.e., in an early infection stage, as compared to the IFN-γ release assay (IGRA). Quantification of specific IFN-γ production at the level of individual CD4+ cells may serve, therefore, as a valuable tool to identify MAP-infected juvenile cattle.


Subject(s)
CD4-Positive T-Lymphocytes , Cattle Diseases , Flow Cytometry , Interferon-gamma , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Animals , Cattle , Paratuberculosis/immunology , Paratuberculosis/diagnosis , Paratuberculosis/microbiology , Mycobacterium avium subsp. paratuberculosis/immunology , Mycobacterium avium subsp. paratuberculosis/physiology , Interferon-gamma/metabolism , Flow Cytometry/veterinary , Flow Cytometry/methods , Cattle Diseases/immunology , Cattle Diseases/diagnosis , Cattle Diseases/microbiology , CD4-Positive T-Lymphocytes/immunology , Biomarkers
2.
Viruses ; 12(8)2020 07 23.
Article in English | MEDLINE | ID: mdl-32717833

ABSTRACT

The efficacy of the combined administration of a porcine reproductive and respiratory syndrome (PRRS) modified live virus (MLV) vaccine and a porcine parvovirus 1 (PPV1) subunit vaccine in gilts was addressed in two experiments. Experiment A aimed to establish a 4-week onset of immunity (OOI). Gilts were randomly distributed in three treatment groups: non-vaccinated control animals (group 1), animals vaccinated with the combined vaccine (group 2), and a third group that consisted of animals vaccinated with the PRRS MLV vaccine alone (group 3). Four weeks after the first vaccination, gilts were challenged with a heterologous PRRS virus 1 (PRRSV1) and euthanized three weeks after. Besides this, experiment B pursued a 17-week duration of immunity (DOI). In this case, gilts were distributed in the same treatment groups, but for the third group, which consisted of non-vaccinated, non-challenged animals were used instead. For the DOI assessment, gilts were artificially inseminated 4 weeks after the first vaccination, challenged at day 90 of gestation, and followed up, together with their offspring, until day 20 post-farrowing. Serology and viremia post-challenge were determined in gilts from both experiments, while farrowing and piglet performance were only evaluated in experiment B. Overall, the combined vaccine helped to protect gilts from viremia post-challenge and, consequently, to prevent PRRS clinical symptoms and diminish the proportion of piglets infected congenitally or early in life. The combined vaccine also elicited a significant improvement in piglet survival rate and growth performance until weaning. The present results reveal efficacy and lack of interference of the mixed use of the tested vaccines against PRRSV1 infection, with at least 4-week OOI and 17-week DOI.


Subject(s)
Immunity, Heterologous , Parvovirus, Porcine/immunology , Porcine Reproductive and Respiratory Syndrome/prevention & control , Porcine respiratory and reproductive syndrome virus/immunology , Vaccination/veterinary , Viral Vaccines/administration & dosage , Animals , Animals, Newborn , Drug Combinations , Female , Pregnancy , Swine/physiology , Vaccination/methods , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Viral Load , Viral Vaccines/immunology , Viremia/prevention & control
3.
BMC Vet Res ; 16(1): 184, 2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32517691

ABSTRACT

BACKGROUND: Porcine parvovirus 1 (PPV1) is widespread in commercial pig farms worldwide and has a significant impact to the swine industry. Long-lasting immunity achieved by means of vaccination is the main tool to prevent PPV1 infection and its associated clinical signs. Here we evaluated the duration of immunity (DOI) conferred by a novel subunit vaccine based on the viral protein (VP) 2 of PPV1, named ReproCyc® ParvoFLEX. The DOI was assessed at 6 months post-vaccination following the standard vaccination scheme (phase I) or after re-vaccination (phase II) with a single injection administered 24 weeks after the basic vaccination scheme. A total of 46, five to six-month-old gilts, free of PPV1 and porcine reproductive and respiratory syndrome virus (PRRSV), were randomly assigned to 6 groups (three in each phase): the negative control groups were inoculated with sodium chloride (NaCl), the vaccinated groups were immunized with the PPV1 subunit vaccine and the strict controls were neither treated nor challenged. Subsequently, the negative control and vaccinated groups from each phase were challenged with a heterologous PPV1 strain. Infection of fetuses was the primary outcome parameter for efficacy, though other supportive parameters were PPV1 viremia and serological status of the gilts and the condition of their fetuses (i.e. normal, autolytic, or mummified). RESULTS: All gilts vaccinated against PPV1 tested seropositive at challenge and viremia after challenge was detectable only in the non-vaccinated animals. In this regard, fetuses positive to PPV1 by PCR were only found in litters from non-vaccinated sows. CONCLUSIONS: These results point out that the immunity developed by the PPV1 subunit vaccine is effective in terms of preventing viremia, transplacental infection of fetuses and fetal death caused by PPV1 infection. ReproCyc® ParvoFLEX was demonstrated to protect fetuses against heterologous PPV1 challenge with a DOI of 6 months after vaccination.


Subject(s)
Parvoviridae Infections/veterinary , Parvovirus, Porcine/immunology , Swine Diseases/virology , Vaccines, Subunit/immunology , Animals , Female , Fetus/virology , Immunization/veterinary , Parvoviridae Infections/immunology , Parvoviridae Infections/prevention & control , Pregnancy , Pregnancy Complications, Infectious/veterinary , Pregnancy Complications, Infectious/virology , Sus scrofa , Swine , Swine Diseases/prevention & control , Vaccination/veterinary , Vaccines, Subunit/administration & dosage , Viral Proteins/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/immunology
4.
Heliyon ; 5(11): e02593, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31840113

ABSTRACT

Porcine parvovirus 1 (PPV1) viral protein (VP) 2 is the primary antigen responsible for inducing specific protective immunity, so it is a desirable target for development of recombinant subunit vaccines to prevent PPV1 disease. The objective of this study was to evaluate repeated doses of a novel VP2-based PPV1 subunit vaccine, namely ReproCyc® ParvoFLEX, for safety in bred pigs and in offspring under experimental settings. Therefore, the investigation of safety at all breeding stages was evaluated in four independent studies involving: pre-breeding gilts (study A), breeding-age gilts and boars (study B), early and late gestating sows and offspring (study C) and lactating sows and offspring (study D). In all four studies, animals were free from PPV1 based on serology and PCR prior to inclusion. All studies comprised one or two vaccinated groups that received the PPV1 subunit vaccine and a negative control group. Thus, safety was established due to the lack of significant differences between the vaccinated groups and the corresponding unvaccinated (negative control) groups. Gilts, sows and boars were evaluated for local and systemic reactions after vaccination as well as for reproductive performance. The survival rate and average daily weight gain (ADWG) from birth to weaning in offspring was evaluated in studies C and D. Additionally, serology was determined in studies A, C and D. The vaccine was shown to be safe with no relevant significant differences between vaccinated and unvaccinated groups in any experiment. Therefore, repeated doses of ReproCyc® ParvoFLEX were safe in target animals at different stages of the reproductive cycle and in offspring, placing this vaccine as a suitable candidate for mass vaccination programs in breeding herds.

5.
Porcine Health Manag ; 5: 28, 2019.
Article in English | MEDLINE | ID: mdl-31890252

ABSTRACT

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine parvovirus 1 (PPV1) are two common causes of reproductive failure. ReproCyc® ParvoFLEX is a novel subunit vaccine based on the protective viral protein (VP) 2 of PPV1 that has been recently licensed in the European (EU) market, whereas ReproCyc® PRRS EU is a porcine reproductive and respiratory syndrome (PRRS) modified live virus (MLV) vaccine authorized in 2015. The present work sought to evaluate the safety and compatibility of the combined administration of the abovementioned vaccines in target animals under the context of a field PRRSV (experiment A) and PPV1 (experiment B) infection. To achieve this objective, safety and lack of vaccines' antigen interference were established according to the absence of significant differences between the combined vaccinated animals (PPRSV+PPV1) and the single vaccinated animals against PRRSV or PPV1. In both experiments, gilts and sows were evaluated for local and systemic reactions after vaccination as well as for reproductive and productive performance. In addition, tissues from abortions, mummified fetuses and stillborn piglets were analyzed for the presence of PRRSV and PPV1. Lastly, serology and viremia were determined in experiment B. RESULTS: No relevant differences in terms of safety, reproductive and productive performance between the single vaccinated and the combined vaccinated animals in either experiment were observed. CONCLUSIONS: ReproCyc® PRRS EU mixed with ReproCyc® ParvoFLEX can be used as a safe method of protection against the detrimental effects of PRRSV and PPV1 infections in breeding female pigs in one single injection. The present results also open up opportunities to tackle reproductive problems as a whole by combining control programs against swine reproductive pathogens.

6.
Innate Immun ; 21(6): 655-64, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25907071

ABSTRACT

Shiga toxin (Stx)-producing Escherichia coli (STEC) infections in cattle are asymptomatic; however, Stx impairs the initiation of an adaptive immune response by targeting bovine peripheral and intraepithelial lymphocytes. As presumptive bovine mucosal macrophages (Mø) are also sensitive to Stx, STEC may even exert immune modulatory effects by acting on steps preceding lymphocyte activation at the Mø level. We therefore studied the expression of the Stx receptor (CD77), cellular phenotype and functions after incubation of primary bovine monocyte-derived Mø with purified Stx1. A significant portion of bovine Mø expressed CD77 on their surface, with the recombinant B-subunit of Stx1 binding to >50% of the cells. Stx1 down-regulated significantly surface expression of CD14, CD172a and co-stimulatory molecules CD80 and CD86 within 4 h of incubation, while MHC-II expression remained unaffected. Furthermore, incubation of Mø with Stx1 increased significantly numbers of transcripts for IL-4, IL-6, IL-10, IFN-γ, TNF-α, IL-8 and GRO-α but not for IL-12, TGF-ß, MCP-1 and RANTES. In the course of bovine STEC infections, Stx1 appears to induce in Mø a mixed response pattern reminiscent of regulatory Mø, which may amplify the direct suppressive effect of the toxin on lymphocytes.


Subject(s)
Cattle , Escherichia coli Infections/immunology , Escherichia coli/immunology , Macrophages/physiology , Shiga Toxin 1/metabolism , Trihexosylceramides/metabolism , Animals , Cells, Cultured , Cytokines/metabolism , Lipopolysaccharide Receptors/metabolism , Lymphocytes/microbiology , Lymphocytes/physiology , Macrophages/microbiology , Recombinant Proteins/genetics , Trihexosylceramides/genetics
7.
Vet Res ; 46: 38, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25889651

ABSTRACT

Cattle are the most important reservoir for enterohemorrhagic Escherichia coli (EHEC), a subset of shigatoxigenic E. coli (STEC) capable of causing life-threatening infectious diseases in humans. In cattle, Shiga toxins (Stx) suppress the immune system thereby promoting long-term STEC shedding. First infections of animals at calves' age coincide with the lack of Stx-specific antibodies. We hypothesize that vaccination of calves against Shiga toxins prior to STEC infection may help to prevent the establishment of a persistent type of infection. The objectives of this study were to generate recombinant Shiga toxoids (rStx1mut & rStx2mut) by site-directed mutagenesis and to assess their immunomodulatory, antigenic, and immunogenic properties. Cultures of bovine primary immune cells were used as test systems. In ileal intraepithelial lymphocytes both, recombinant wild type Stx1 (rStx1WT) and rStx2WT significantly induced transcription of IL-4 mRNA. rStx1WT and rStx2WT reduced the expression of Stx-receptor CD77 (syn. Globotriaosylceramide, Gb3) on B and T cells from peripheral blood and of CD14 on monocyte-derived macrophages. At the same concentrations, rStx1mut and rStx2mut exhibited neither of these effects. Antibodies in sera of cattle naturally infected with STEC recognized the rStxmut toxoids equally well as the recombinant wild type toxins. Immunization of calves with rStx1mut plus rStx2mut led to induction of antibodies neutralizing Stx1 and Stx2. While keeping their antigenicity and immunogenicity recombinant Shiga toxoids are devoid of the immunosuppressive properties of the corresponding wild type toxins in cattle and candidate vaccines to mitigate long-term STEC shedding by the reservoir host.


Subject(s)
Bacterial Proteins/genetics , Cattle Diseases/immunology , Escherichia coli Infections/veterinary , Escherichia coli Vaccines/immunology , Shiga-Toxigenic Escherichia coli/immunology , Toxoids/pharmacology , Animals , Bacterial Proteins/metabolism , Cattle , Cattle Diseases/microbiology , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Escherichia coli Vaccines/adverse effects , Male , Mutagenesis, Site-Directed/veterinary , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology
8.
Vet Res Commun ; 36(2): 139-48, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22392598

ABSTRACT

In the dog, mesenchymal stem cells (MSCs) have been shown to reside in the bone marrow (bone marrow-derived mesenchymal stem cells: BM-MSCs) as well as in the adipose tissue (adipose tissue-derived stem cells: ADSCs). Potential application fields for these multipotent MSCs in small animal practice are joint diseases as MSCs of both sources have shown to possess chondrogenic differentiation ability. However, it is not clear whether the chondrogenic differentiation potential of cells of these two distinct tissues is truly equal. Therefore, we compared MSCs of both origins in this study in terms of their chondrogenic differentiation ability and suitability for clinical application. BM-MSCs harvested from the femoral neck and ADSCs from intra-abdominal fat tissue were examined for their morphology, population doubling time (PDT) and CD90 surface antigen expression. RT-PCR served to assess expression of pluripotency marker Oct4 and early differentiation marker genes. Chondrogenic differentiation ability was compared and validated using histochemistry, transmission electron microscopy (TEM) and quantitative RT-PCR. Both cell populations presented a highly similar morphology and marker expression in an undifferentiated stage except that freshly isolated ADSCs demonstrated a significantly faster PDT than BM-MSCs. In contrast, BM-MSCs revealed a morphological superior cartilage formation by the production of a more abundant and structured hyaline matrix and higher expression of lineage specific genes under the applied standard differentiation protocol. However, further investigations are necessary in order to find out if chondrogenic differentiation can be improved in canine ADSCs using different protocols and/or supplements.


Subject(s)
Adipose Tissue/physiology , Bone Marrow Cells/physiology , Chondrogenesis/physiology , Dogs , Mesenchymal Stem Cells/physiology , Adipose Tissue/ultrastructure , Animals , Biomarkers/metabolism , Bone Marrow Cells/ultrastructure , Cell Differentiation , Cell Proliferation , Cells, Cultured , Gene Expression Regulation/physiology , Mesenchymal Stem Cells/ultrastructure , Reverse Transcriptase Polymerase Chain Reaction
9.
Vet Immunol Immunopathol ; 141(1-2): 1-10, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21272941

ABSTRACT

Bovine neonatal pancytopenia (BNP) is an emerging calf disease of unknown cause characterized by a pronounced susceptibility to bleeding as a result of a pancytopenia and bone marrow depletion. In this study we investigated whether this phenomenon is related to colostrum-derived alloantibodies directed against neonatal leukocytes. In a first experiment and using a flow cytometric approach sera from 6 BNP-dams (had given birth to BNP-calves; vaccinated against bovine viral diarrhea virus [BVDV]) and 6 control-dams (no herd history of BNP; no BVDV vaccination) were analyzed for the presences of alloantibodies (IgG) able to bind to the surface of leukocytes isolated from 7 calves from a herd with no history of BNP (no BVDV vaccination). In a second experiment, 4 neonates from 3 BNP-dams were fed colostrum from their corresponding mothers and sampled on a regular basis from birth up to day 21 of life under clinically controlled conditions. Sample analysis of the 4 neonates included hematology (white blood cell count and platelets), bone marrow cytology and histopathology as well as the flow cytometric detection of the percentage of IgG+-lymphocytes/monocytes in the peripheral blood. Experiment #1 showed that all BNP-dam sera harbored significantly higher alloantibody titers than the control dam sera (p<0.001). In the peripheral blood of the two neonates (Experiment #2), the percentage of IgG+-cells increased dramatically within 12h post colostrum intake (p.c.i.), remaining at over 95% for up to 3 days. Both calves developed BNP-associated clinical symptoms, one died. Both twin calves showed no clinical symptoms accompanied by a minor increase of IgG+ cells for up to 12h. Thus, the level of IgG+-cells and the duration of the detection thereof correlated with the severity of BNP developed by these animals. The results show that BNP-dams harbor alloantibodies against surface antigens of neonatal leukocytes in their sera that are readily transferred to the offspring via colostrum. These alloantibodies probably play a crucial role in the pathogenesis of BNP.


Subject(s)
Cattle Diseases/immunology , Colostrum/immunology , Isoantibodies/immunology , Pancytopenia/veterinary , Animals , Animals, Newborn/immunology , Cattle/immunology , Female , Flow Cytometry/veterinary , Immunoglobulin G/immunology , Leukocyte Count/veterinary , Leukocytes/immunology , Pancytopenia/immunology , Platelet Count/veterinary , Pregnancy
10.
Vet Immunol Immunopathol ; 137(1-2): 54-63, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20471109

ABSTRACT

The parasitic or commensal lifestyle of bacteria in different hosts depends on specific molecular interactions with the respective host species. In vitro models to study intestinal bacteria-host interactions in cattle are not available. Bovine primary colonocyte (PC) cultures were generated from colon crypt explants. Up to day 4 of culture, the vast majority of cells were of epithelial phenotype (i.e., expressed cytokeratin but not vimentin). PCs harboured mRNA specific for Toll-like receptors (TLR) 1, TLR3, TLR4 and TLR6 but not for TLR2, TLR5, TLR7, TLR8, TLR9 and TLR10. Six hours after inoculation of PC cultures with Escherichia coli (E. coli) prototype strains representing different pathovars (enterohaemorrhagic E. coli [EHEC], enteropathogenic E. coli [EPEC], enterotoxic E. coli [ETEC]), bacteria were found attached to the cells. EPEC adhesion was accompanied by intracellular actin accumulation. An attenuated laboratory strain (E. coli K12 C600) and a bovine commensal E. coli strain (P391) both did not adhere. Bacterial or LPS challenge of PC cultures resulted in specific increases in mRNA transcripts for IL-8, GRO-alpha, MCP-1, RANTES, and IL-10. The level of mRNA transcripts for TGF-beta stayed constant, while IL-12 mRNA was not detectable. Short-term cultures of PCs, maintaining epithelial cell properties, interacted with commensal and pathogenic bacteria in a strain-specific manner and have proven to be a useful in vitro model to study the interaction of bacteria with the bovine intestinal mucosa.


Subject(s)
Colon/cytology , Colon/microbiology , Escherichia coli/pathogenicity , Animals , Bacterial Adhesion , Cattle , Cells, Cultured , Colon/immunology , Models, Animal , RNA, Messenger/analysis , Species Specificity , Toll-Like Receptors/genetics
11.
Infect Immun ; 76(11): 5381-91, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18765725

ABSTRACT

Bovine colonic crypt cells express CD77 molecules that potentially act as receptors for Shiga toxins (Stx). The implication of this finding for the intestinal colonization of cattle by human pathogenic Stx-producing Escherichia coli (STEC) remains undefined. We used flow cytometric and real-time PCR analyses of primary cultures of colonic crypt cells to evaluate cell viability, CD77 expression, and gene transcription in the presence and absence of purified Stx1. A subset of cultured epithelial cells had Stx receptors which were located mainly intracellularly, with a perinuclear distribution, and were resistant to Stx1-induced apoptosis and Stx1 effects on chemokine expression patterns. In contrast, a population of vimentin-positive cells, i.e., mesenchymal/nonepithelial cells that had high numbers of Stx receptors on their surface, was depleted from the cultures by Stx1. In situ, CD77(+) cells were located in the lamina propria of the bovine colon by using immunofluorescence staining. A newly established vimentin-positive crypt cell line with high CD77 expression resisted the cytolethal effect of Stx1 but responded to Stx1 with a significant increase in interleukin-8 (IL-8), GRO-alpha, MCP-1, and RANTES mRNA. Combined stimulation with lipopolysaccharide and Stx1 increased IL-10 mRNA. Our results show that bovine colonic crypt cells of epithelial origin are resistant to both the cytotoxic and modulatory effects of Stx1. In contrast, some mucosal mesenchymal cells, preliminarily characterized as mucosal macrophages, are Stx1-responsive cells that may participate in the interaction of STEC with the bovine intestinal mucosa.


Subject(s)
Epithelial Cells/metabolism , Intestinal Mucosa/metabolism , Mesoderm/metabolism , Shiga Toxin 1/metabolism , Trihexosylceramides/biosynthesis , Animals , Cattle , Cell Survival , Cells, Cultured , Chemokine CCL5/biosynthesis , Chemokine CXCL1/biosynthesis , Colon/immunology , Colon/metabolism , Colon/microbiology , Epithelial Cells/immunology , Escherichia coli Infections/immunology , Escherichia coli Infections/metabolism , Escherichia coli Infections/veterinary , Flow Cytometry , Fluorescent Antibody Technique , Gene Expression , Interleukin-8/biosynthesis , Intestinal Mucosa/immunology , Mesoderm/cytology , Mesoderm/immunology , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction , Shiga Toxin 1/immunology , Shiga-Toxigenic Escherichia coli/immunology , Shiga-Toxigenic Escherichia coli/metabolism , Shiga-Toxigenic Escherichia coli/pathogenicity , Transcription, Genetic , Transforming Growth Factor beta/biosynthesis
12.
Biol Reprod ; 79(2): 274-82, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18417711

ABSTRACT

In the bovine synepitheliochorial placenta, restricted trophoblast invasion requires complex interactions of integrin receptors with proteins of the extracellular matrix (ECM) and integrin receptors of neighboring cells. Activated integrins assemble to focal adhesions and are linked to the actin cytoskeleton via signaling molecules including alpha-actinin (ACTN), focal adhesion kinase (PTK2 or FAK), phosphotyrosine, and talin (TLN1). Aims of this study were to assess integrin activation and focal adhesion assembly within epithelial cells of bovine placentomes and low-passage (not transformed) placentomal caruncular epithelial cells cultured on dishes coated with ECM proteins. Immunofluorescence analysis was performed to colocalize the signaling molecules ACTN, PTK2, phosphotyrosine, and TLN1 with each other and with beta(1)-integrin (ITGB1) in placentomal cryosections throughout pregnancy and in caruncular epithelial cells in vitro. Antibody specificity was confirmed by Western blot. Cells were cultured on uncoated dishes, and the dishes were coated with fibronectin (FN), laminin (LAMA), and collagen type IV (COL4), thereby statistically assessing cell number and qualitatively assessing the expression pattern of ITGB1, phosphotyrosine, and TLN1. Results demonstrated integrin activation and focal adhesion assembly in the placentome and that low-passage caruncular epithelial cells maintain integrin-associated properties observed in vivo. Expression and/or colocalization of signaling molecules with ITGB1 confirmed, for the first time, integrin activation and participation in "outside-in" and "inside-out" signaling pathways. The prominent role of ECM, and FN in particular, in integrin signaling is supported by the in vitro enhancement of proliferation and focal adhesion expression. Thus, this in vitro model provides excellent potential for further mechanistic studies designed to elucidate feto-maternal interactions in the bovine placentome.


Subject(s)
Cattle/metabolism , Epithelial Cells/metabolism , Integrins/metabolism , Placenta/metabolism , Pregnancy, Animal , Animals , Cattle/physiology , Cell Proliferation , Cell Separation , Cells, Cultured , Epithelial Cells/cytology , Extracellular Matrix/physiology , Female , Fibronectins/physiology , Focal Adhesions/metabolism , Focal Adhesions/physiology , Models, Biological , Placenta/cytology , Pregnancy , Trophoblasts/cytology , Trophoblasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...