Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 48(4): 1461-1468, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33294990

ABSTRACT

PURPOSE: For stereotactic radiosurgery (SRS), accurate evaluation of dose-volume metrics for small structures is necessary. The purpose of this study was to compare the DVH metric capabilities of five commercially available SRS DVH analysis tools (Eclipse, Elements, Raystation, MIM, and Velocity). METHODS: DICOM RTdose and RTstructure set files created using MATLAB were imported and evaluated in each of the tools. Each structure set consisted of 50 randomly placed spherical targets. The dose distributions were created on a 1-mm grid using an analytic model such that the dose-volume metrics of the spheres were known. Structure sets were created for 3, 5, 7, 10, 15, and 20 mm diameter spheres. The reported structure volume, V100% [cc], and V50% [cc], and the RTOG conformity index and Paddick Gradient Index, were compared with the analytical values. RESULTS: The average difference and range across all evaluated target sizes for the reported structure volume was - 4.73%[-33.2,0.2], 0.11%[-10.9, 9.5], -0.39%[-12.1, 7.0], -2.24%[-21.0, 1.3], and 1.15%[-15.1,0.8], for TPS-A through TPS-E, respectively. The average difference and range for the V100%[cc] (V20Gy[cc]) was - 0.4[-24.5,9.8], -2.73[-23.6, 1.1], -3.01[-23.6, 0.6], -3.79[-27.3, 1.3], and 0.26[-6.1,2.6] for TPS-A through TPS-E, respectively. For V50%[cc](V10Gy[cc]) in TPS-A through TPS-E the average and ranger were - 0.05[-0.8,0.4], -0.18[-1.2, 0.5], -0.44[-1.4, 0.3], -0.26[-1.8, 2.6], and 0.09[-1.4,2.7]. CONCLUSION: This study expanded on the previously published literature to quantitatively compare the DVH analysis capabilities of software commonly used for SRS plan evaluation and provides freely available and downloadable analytically derived set of ground truth DICOM dose and structure files for the use of radiotherapy clinics. The differences between systems highlight the need for standardization and/or transparency between systems, especially when evaluating plan quality for multi-institutional clinical trials.


Subject(s)
Radiosurgery , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Software
2.
J Appl Clin Med Phys ; 20(12): 127-137, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31763759

ABSTRACT

PURPOSE: Our purposes are to compare the accuracy of RaySearch's analytical pencil beam (APB) and Monte Carlo (MC) algorithms for clinical proton therapy and to present clinical validation data using a novel animal tissue lung phantom. METHODS: We constructed a realistic lung phantom composed of a rack of lamb resting on a stack of rectangular natural cork slabs simulating lung tissue. The tumor was simulated using 70% lean ground lamb meat inserted in a spherical hole with diameter 40 ± 5 mm carved into the cork slabs. A single-field plan using an anterior beam and a two-field plan using two anterior-oblique beams were delivered to the phantom. Ion chamber array measurements were taken medial and distal to the tumor. Measured doses were compared with calculated RayStation APB and MC calculated doses. RESULTS: Our lung phantom enabled measurements with the MatriXX PT at multiple depths in the phantom. Using the MC calculations, the 3%/3 mm gamma index pass rates, comparing measured with calculated doses, for the distal planes were 74.5% and 85.3% for the APB and 99.1% and 92% for the MC algorithms. The measured data revealed up to 46% and 30% underdosing within the distal regions of the target volume for the single and the two field plans when APB calculations are used. These discrepancies reduced to less than 18% and 7% respectively using the MC calculations. CONCLUSIONS: RaySearch Laboratories' Monte Carlo dose calculation algorithm is superior to the pencil-beam algorithm for lung targets. Clinicians relying on the analytical pencil-beam algorithm should be aware of its pitfalls for this site and verify dose prior to delivery. We conclude that the RayStation MC algorithm is reliable and more accurate than the APB algorithm for lung targets and therefore should be used to plan proton therapy for patients with lung cancer.


Subject(s)
Algorithms , Lung Neoplasms/radiotherapy , Monte Carlo Method , Organs at Risk/radiation effects , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Humans , Proton Therapy/methods , Radiotherapy Dosage
3.
J Appl Clin Med Phys ; 20(10): 160-171, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31541536

ABSTRACT

PURPOSE: The aim of this study is to validate the RayStation Monte Carlo (MC) dose algorithm using animal tissue neck phantoms and a water breast phantom. METHODS: Three anthropomorphic phantoms were used in a clinical setting to test the RayStation MC dose algorithm. We used two real animal necks that were cut to a workable shape while frozen and then thawed before being CT scanned. Secondly, we made a patient breast phantom using a breast prosthesis filled with water and placed on a flat surface. Dose distributions in the animal and breast phantoms were measured using the MatriXX PT device. RESULTS: The measured doses to the neck and breast phantoms compared exceptionally well with doses calculated by the analytical pencil beam (APB) and MC algorithms. The comparisons between APB and MC dose calculations and MatriXX PT measurements yielded an average depth difference for best gamma agreement of <1 mm for the neck phantoms. For the breast phantom better average gamma pass rates between measured and calculated dose distributions were observed for the MC than for the APB algorithms. CONCLUSIONS: The MC dose calculations are more accurate than the APB calculations for the static phantoms conditions we evaluated, especially in areas where significant inhomogeneous interfaces are traversed by the beam.


Subject(s)
Algorithms , Breast/radiation effects , Head/radiation effects , Monte Carlo Method , Neck/radiation effects , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Animals , Deer , Female , Humans , Neoplasms/radiotherapy , Organs at Risk/radiation effects , Proton Therapy , Radiotherapy Dosage , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...