Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Endocr Soc ; 8(3): bvae015, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38370444

ABSTRACT

Growth hormone (GH) modifies liver gene transcription in a sexually dimorphic manner to meet liver metabolic demands related to sex; thus, GH dysregulation leads to sex-biased hepatic disease. We dissected the steps of the GH regulatory cascade modifying GH-dependent genes involved in metabolism, focusing on the male-predominant genes Lcn13, Asns, and Cyp7b1, and the female-predominant genes Hao2, Pgc1a, Hamp2, Cyp2a4, and Cyp2b9. We explored mRNA expression in 2 settings: (i) intact liver GH receptor (GHR) but altered GH and insulin-like growth factor 1 (IGF1) levels (NeuroDrd2KO, HiGH, aHepIGF1kd, and STAT5bCA mouse lines); and (ii) liver loss of GHR, with or without STAT5b reconstitution (aHepGHRkd, and aHepGHRkd + STAT5bCA). Lcn13 was downregulated in males in most models, while Asns and Cyp7b1 were decreased in males by low GH levels or action, or constant GH levels, but unexpectedly upregulated in both sexes by the loss of liver Igf1 or constitutive Stat5b expression. Hao, Cyp2a4, and Cyp2b9 were generally decreased in female mice with low GH levels or action (NeuroDrd2KO and/or aHepGHRkd mice) and increased in HiGH females, while in contrast, Pgc1a was increased in female NeuroDrd2KO but decreased in STAT5bCA and aHepIGF1kd females. Bioinformatic analysis of RNAseq from aHepGHRkd livers stressed the greater impact of GHR loss on wide gene expression in males and highlighted that GH modifies almost completely different gene signatures in each sex. Concordantly, we show that altering different steps of the GH cascade in the liver modified liver expression of Lcn13, Asns, Cyp7b1, Hao2, Hamp2, Pgc1a, Cyp2a4, and Cyp2b9 in a sex- and gene-specific manner.

2.
Int J Pharm ; 634: 122662, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36736675

ABSTRACT

Growth hormone deficiency has been treated by the daily administration of recombinant human growth hormone (hGH) for decades. Patient compliance to this treatment is generally incomplete due to challenges including dose frequency and lack of perceived benefits. This stimulates the research on new formulations to reduce the number of periodic administrations. In this study silica nanoparticles and silica-collagen nanocomposites were evaluated for hGH loading and release. Bare nanoparticles showed higher hGH adsorption capacity than thiol- and isobutyl-bearing particles of similar diameters. Monitoring of bound protein conformation changes indicated hGH structure retention when adsorbed on bare silica nanoparticles and suggested no alterations on protein activity. Protein-loaded particles incorporated into collagen matrices (silica-collagen nanocomposites) showed a progressive protein release profile different from the observed for hGH-loaded silica nanoparticles and hGH-loaded collagen matrices. While both the collagen and the silica nanoparticle systems reached a 100 % release after 4 and 7 days respectively, silica-collagen nanocomposites showed a bi-phasic prolonged hGH release reaching approximately an 80 % after 15 days. These findings suggest that biocompatible silica-collagen nanocomposites could be used as vehicles for the prolonged delivery of hGH which could lead to a potential reduction in the number of periodic administrations.


Subject(s)
Human Growth Hormone , Humans , Human Growth Hormone/chemistry , Silicon Dioxide , Collagen , Drug Compounding , Recombinant Proteins , Growth Hormone
3.
J Mol Endocrinol ; 64(3): 165-179, 2020 04.
Article in English | MEDLINE | ID: mdl-31990658

ABSTRACT

Many sex differences in liver gene expression originate in the brain, depend on GH secretion and may underlie sex disparities in hepatic disease. Because epigenetic mechanisms may contribute, we studied promoter methylation and microRNA abundance in the liver, associated with expression of sexual dimorphic genes in mice with selective disruption of the dopamine D2 receptor in neurons (neuroDrd2KO), which decreases hypothalamic Ghrh, pituitary GH, and serum IGFI and in neonatally androgenized female mice which have increased pituitary GH content and serum IGFI. We evaluated mRNA levels of the female predominant genes prolactin receptor (Prlr), alcohol dehydrogenase 1 (Adh1), Cyp2a4, and hepatocyte nuclear transcription factor 6 (Hnf6) and the male predominant gene, Cyp7b1. Female predominant genes had higher mRNA levels compared to males, but lower methylation was only detected in the Prlr and Cyp2a4 female promoters. In neuroDrd2KO mice, sexual dimorphism was lost for all genes; the upregulation (feminization) of Prlr and Cyp2a4 in males correlated with decreased methylation of their promoters, and the downregulation (masculinization) of Hnf-6 mRNA in females correlated inversely with its promoter methylation. Neonatal androgenization of females evoked a loss of sexual dimorphism only for the female predominant Hnf6 and Adh1 genes, but no differences in promoter methylation were found. Finally, mmu-miR-155-5p, predicted to target Cyp7b1 expression, was lower in males in association with higher Cyp7b1 mRNA levels compared to females and was not modified in neuroDrd2KO or TP mice. Our results suggest specific regulation of gene sexually dimorphic expression in the liver by methylation or miRNAs.


Subject(s)
Alcohol Dehydrogenase/genetics , Aryl Hydrocarbon Hydroxylases/genetics , Cytochrome P450 Family 2/genetics , Cytochrome P450 Family 7/genetics , Growth Hormone/pharmacology , Hepatocyte Nuclear Factor 6/genetics , Receptors, Prolactin/genetics , Steroid Hydroxylases/genetics , Alcohol Dehydrogenase/metabolism , Animals , Aryl Hydrocarbon Hydroxylases/metabolism , Cytochrome P450 Family 2/metabolism , Cytochrome P450 Family 7/metabolism , Epigenesis, Genetic/drug effects , Epigenesis, Genetic/physiology , Female , Gene Expression Regulation/drug effects , Growth Hormone/metabolism , Hepatocyte Nuclear Factor 6/metabolism , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Promoter Regions, Genetic/genetics , Receptors, Prolactin/metabolism , Sex Characteristics , Signal Transduction/drug effects , Signal Transduction/genetics , Steroid Hydroxylases/metabolism
4.
J Neuroendocrinol ; 32(11): e12888, 2020 11.
Article in English | MEDLINE | ID: mdl-33463813

ABSTRACT

Prolactin is named after its vital role of promoting milk production during lactation, although it has been implicated in multiple functions within the body, including metabolism and energy homeostasis. Prolactin has been hypothesised to play a key role in driving many of the adaptations of the maternal body to allow the mother to meet the physiological demands of both pregnancy and lactation, including the high energetic demands of the growing foetus followed by milk production to support the offspring after birth. Prolactin receptors are found in many tissues involved in metabolism and food intake, such as the pancreas, liver, hypothalamus, small intestine and adipose tissue. We review the literature examining the effects of prolactin in these various tissues and how they relate to changes in function in physiological states of high prolactin, such as pregnancy and lactation, and in pathological states of hyperprolactinaemia in the adult. In many cases, whether prolactin promotes healthy metabolism or leads to dysregulation of metabolic functions is highly dependent on the situation. Overall, although prolactin may not play a major role in regulating metabolism and body weight outside of pregnancy and lactation, it definitely has the ability to contribute to metabolic function.


Subject(s)
Lactation/physiology , Metabolism/physiology , Prolactin/physiology , Animals , Female , Humans , Pregnancy , Receptors, Prolactin/metabolism
5.
Cell Mol Neurobiol ; 39(2): 169-180, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30656469

ABSTRACT

A multistep signaling cascade originates in brain centers that regulate hypothalamic growth hormone-releasing hormone (Ghrh) and somatostatin expression levels and release to control the pattern of GH secretion. This process is sexually fine-tuned, and relays important information to the liver where GH receptors can be found. The temporal pattern of pituitary GH secretion, which is sex-specific in many species (episodic in males and more stable in females), represents a major component in establishing and maintaining the sexual dimorphism of hepatic gene transcription. The liver is sexually dimorphic exhibiting major differences in the profile of more than 1000 liver genes related to steroid, lipid, and foreign compound metabolism. Approximately, 90% of these sex-specific liver genes were shown to be primarily dependent on sexually dimorphic GH secretory patterns. This proposes an interesting scenario in which the central nervous system, indirectly setting GH profiles through GHRH and somatostatin control, regulates sexual dimorphism of liver activity in accordance with the need for sex-specific steroid metabolism and performance. We describe the influence of the loss of sexual dimorphism in liver gene expression due to altered brain function. Among other many factors, abnormal brain sexual differentiation, xenoestrogen exposure and D2R ablation from neurons dysregulate the GHRH-GH axis, and ultimately modify the liver capacity for adaptive mechanisms. We, therefore, propose that an inefficient brain control of the endocrine growth axis may underlie alterations in several metabolic processes through an indirect influence of sexual dimorphism of liver genes.


Subject(s)
Brain/physiopathology , Endocrine System/physiopathology , Liver Diseases/physiopathology , Liver/physiopathology , Sex Characteristics , Animals , Epigenesis, Genetic , Female , Humans , Liver Diseases/genetics , Male
6.
Am J Physiol Endocrinol Metab ; 311(6): E974-E988, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27802964

ABSTRACT

We studied the impact of high prolactin titers on liver and adipocyte gene expression related to glucose and insulin homeostasis in correlation with obesity onset. To that end we used mutant female mice that selectively lack dopamine type 2 receptors (D2Rs) from pituitary lactotropes (lacDrd2KO), which have chronic high prolactin levels associated with increased body weight, marked increments in fat depots, adipocyte size, and serum lipids, and a metabolic phenotype that intensifies with age. LacDrd2KO mice of two developmental ages, 5 and 10 mo, were used. In the first time point, obesity and increased body weight are marginal, although mice are hyperprolactinemic, whereas at 10 mo there is marked adiposity with a 136% increase in gonadal fat and a 36% increase in liver weight due to lipid accumulation. LacDrd2KO mice had glucose intolerance, hyperinsulinemia, and impaired insulin response to glucose already in the early stages of obesity, but changes in liver and adipose tissue transcription factors were time and tissue dependent. In chronic hyperprolactinemic mice liver Prlr were upregulated, there was liver steatosis, altered expression of the lipogenic transcription factor Chrebp, and blunted response of Srebp-1c to refeeding at 5 mo of age, whereas no effect was observed in the glycogenesis pathway. On the other hand, in adipose tissue a marked decrease in lipogenic transcription factor expression was observed when morbid obesity was already settled. These adaptive changes underscore the role of prolactin signaling in different tissues to promote energy storage.


Subject(s)
Adipocytes/metabolism , Hepatocytes/metabolism , Hyperprolactinemia/genetics , Liver/metabolism , Obesity/genetics , Receptors, Dopamine D2/genetics , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Enzyme-Linked Immunosorbent Assay , Fatty Liver/genetics , Fatty Liver/metabolism , Female , Gene Expression , Glucose/metabolism , Glucose Tolerance Test , Homeostasis/genetics , Hyperprolactinemia/metabolism , Immunohistochemistry , Insulin/metabolism , Lactotrophs/metabolism , Lipogenesis/genetics , Mice , Mice, Knockout , Nuclear Proteins/genetics , Obesity/metabolism , Radioimmunoassay , Real-Time Polymerase Chain Reaction , Receptors, Prolactin/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Transcription Factors/genetics , Up-Regulation
7.
Cancer Med ; 5(9): 2427-41, 2016 09.
Article in English | MEDLINE | ID: mdl-27401257

ABSTRACT

The understanding of the molecular mechanisms of the immune tolerance induced by the tumoral microenvironment is fundamental to prevent cancer development or to treat cancer patients using immunotherapy. Actually, there are investigations about "addressed-drugs" against cancer cells without affecting normal cells. It could be ideal to find selective and specific compounds that only recognize and destroy tumor cells without damaging the host normal cells. For thousands of years, mushrooms have been used for medicinal purposes because of their curative properties. D-Fraction, an extract of Maitake (from the edible Grifola frondosa mushroom), rich in ß-glucans, exert notable effects in the immune system. Until now, some published articles suggest that Maitake D-Fraction could have anti-tumoral activity, prevent oncogenesis and metastasis in some tumor types. However, there are no clear data about Maitake D-Fraction action on breast cancer prevention and its exact molecular mechanisms are not yet elucidated. The experiments were performed employing 25 female BALBc mice that were treated with and without Maitake D-Fraction Pro4X or Maitake Standard for 15 days by daily intraperitoneal injection. After treatment period, all mice were implanted with murine tumor cells LM3 to induce mammary tumorigenesis. Animals were checked weekly and killed after 46 days of LM3 transplant; percentage of cancer prevention, rate of tumor growing, and overall survival were determined. Under dissection, the internal organs were evaluated histologically and genetically by RT-PCR. We found that 5 mg/kg per day of Maitake D-Fraction Pro4X, administered dairy during 15 days to BALBc mice was able to block more than 60% breast cancer development. However, Maitake Standard prevents oncogenesis in 26% to respect control. In this work, we found that Maitake D-Fraction Pro4X, administered to BALBc mice, prevents breast carcinogenesis, block tumor invasiveness, reduce angiogenesis, and increase overall survival.


Subject(s)
Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Cell Transformation, Neoplastic/drug effects , Grifola/chemistry , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic/drug effects , Mice , Mortality , Necrosis , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Phenotype , Xenograft Model Antitumor Assays
8.
Pharmacol Res ; 109: 74-80, 2016 07.
Article in English | MEDLINE | ID: mdl-26748034

ABSTRACT

The importance of dopamine in central nervous system function is well known, but its effects on glucose homeostasis and pancreatic ß cell function are beginning to be unraveled. Mutant mice lacking dopamine type 2 receptors (D2R) are glucose intolerant and have abnormal insulin secretion. In humans, administration of neuroleptic drugs, which block dopamine receptors, may cause hyperinsulinemia, increased weight gain and glucose intolerance. Conversely, treatment with the dopamine precursor l-DOPA in patients with Parkinson's disease reduces insulin secretion upon oral glucose tolerance test, and bromocriptine improves glycemic control and glucose tolerance in obese type 2 diabetic patients as well as in non diabetic obese animals and humans. The actions of dopamine on glucose homeostasis and food intake impact both the autonomic nervous system and the endocrine system. Different central actions of the dopamine system may mediate its metabolic effects such as: (i) regulation of hypothalamic noradrenaline output, (ii) participation in appetite control, and (iii) maintenance of the biological clock in the suprachiasmatic nucleus. On the other hand, dopamine inhibits prolactin, which has metabolic functions; and, at the pancreatic beta cell dopamine D2 receptors inhibit insulin secretion. We review the evidence obtained in animal models and clinical studies that posited dopamine receptors as key elements in glucose homeostasis and ultimately led to the FDA approval of bromocriptine in adults with type 2 diabetes to improve glycemic control. Furthermore, we discuss the metabolic consequences of treatment with neuroleptics which target the D2R, that should be monitored in psychiatric patients to prevent the development in diabetes, weight gain, and hypertriglyceridemia.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Dopamine Agents/therapeutic use , Glucose/metabolism , Acromegaly/drug therapy , Animals , Bromocriptine/therapeutic use , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Dopamine Agents/adverse effects , Homeostasis , Humans , Parkinson Disease/drug therapy , Polymorphism, Genetic , Prolactinoma/drug therapy , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...