Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 113: 104955, 2021 08.
Article in English | MEDLINE | ID: mdl-34034134

ABSTRACT

Inconsistent results have been reported for the effects of the mitogen-activating extracellular kinase (MEK) inhibitor α-[amino(4-aminophenyl)thio]methylene-2-(trifluoromethyl)benzeneacetonitrile (SL 327) on ethanol-induced conditioned place preference (EtOH-CPP). Since such inconsistencies may be due to the configurational composition of administered SL 327, the interconvertibility of the geometric isomers of this class of compounds has been investigated. This study provides conditions for determination of configurational composition of this class of compounds by HPLC and by 1H NMR and reports details of configurational equilibria as a function of medium and time in solution along with solubility data for SL 327 in aqueous DMSO. The results suggest that the apparently inconsistent results reported for CPP-EtOH may be due to the administration of suspension vs. solutions, as well as to different configurational compositions of SL 327.


Subject(s)
Aminoacetonitrile/analogs & derivatives , Aminoacetonitrile/chemistry , Molecular Structure , Solutions
2.
ACS Chem Neurosci ; 10(1): 246-251, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30156829

ABSTRACT

The demonstrated role of PKCß in  mediating amphetamine-stimulated dopamine efflux, which regulates amphetamine-induced dopamine transporter trafficking and activity, has promoted the research use of the selective, reversible PKCß inhibitor (9 S)-9-[(dimethylamino)methyl]-6,7,10,11-tetrahydro-9 H,18 H-5,21:12,17-dimethenodibenzo[ e,k]pyrrolo[3,4- h][1,4,13]oxadiazacyclohexadecine-18,20(19 H)-dione, ruboxistaurin. Despite the interest in development of ruboxistaurin as the mesylate monohydrate (Arxxant) for the treatment of diabetic retinopathy, macular edema, and nephoropathy, several crucial details in physicochemical characterization were erroneous or missing. This report describes the synthesis and full characterization of ruboxistaurin free base (as a monohydrate), including X-ray crystallography to confirm the absolute configuration, and of the mesylate salt, isolated as a hydrate containing 1.5 mol of water per mole.


Subject(s)
Chemistry, Pharmaceutical/methods , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Indoles/chemical synthesis , Indoles/pharmacology , Maleimides/chemical synthesis , Maleimides/pharmacology , Protein Kinase C beta/antagonists & inhibitors , Protein Kinase C beta/metabolism , X-Ray Diffraction/methods
3.
J Med Chem ; 51(6): 1849-60, 2008 Mar 27.
Article in English | MEDLINE | ID: mdl-18307295

ABSTRACT

In previous structure-activity relationship (SAR) studies, we identified (3 R)-7-hydroxy- N-((1 S)-1-{[(3 R,4 R)-4-(3-hydroxyphenyl)-3,4-dimethyl-1-piperidinyl]methyl}-2-methylpropyl)-1,2,3,4-tetrahydro-3-isoquinolinecarboxamide (JDTic, 1) as the first potent and selective kappa opioid receptor antagonist from the trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidine class of opioid antagonist. In the present study, we report the synthesis and in vitro opioid receptor functional antagonism of a number of analogues of 1 using a [ (35) S]GTPgammaS binding assay. The results from the studies better define the pharmacophore for this class of kappa opioid receptor antagonist and has identified new potent and selective kappa antagonist. (3 R)-7-Hydroxy- N-[(1 S,2 S)-1-{[(3 R,4 R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl]methyl}-2-methylbutyl]-1,2,3,4-tetrahydroisoquinoline-3-carboxamide ( 3) with a K e value of 0.03 nM at the kappa receptor and 100- and 793-fold selectivity relative to the mu and delta receptors was the most potent and selective kappa opioid receptor antagonist identified.


Subject(s)
Piperidines/chemical synthesis , Piperidines/pharmacology , Receptors, Opioid, kappa/antagonists & inhibitors , Tetrahydroisoquinolines/chemical synthesis , Tetrahydroisoquinolines/pharmacology , Humans , Molecular Structure , Piperidines/chemistry , Receptors, Opioid, delta/antagonists & inhibitors , Receptors, Opioid, mu/antagonists & inhibitors , Stereoisomerism , Structure-Activity Relationship , Tetrahydroisoquinolines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...