Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
3.
Nanomaterials (Basel) ; 12(8)2022 04 07.
Article in English | MEDLINE | ID: mdl-35457963

ABSTRACT

Titanium dioxide (TiO2) is present in many different food products as the food additive E171, which is currently scrutinized due to its potential adverse effects, including the stimulation of tumor formation in the gastrointestinal tract. We developed a transgenic mouse model to examine the effects of E171 on colorectal cancer (CRC), using the Cre-LoxP system to create an Apc-gene-knockout model which spontaneously develops colorectal tumors. A pilot study showed that E171 exposed mice developed colorectal adenocarcinomas, which were accompanied by enhanced hyperplasia in epithelial cells, lymphatic nodules at the base of the polyps, and increased tumor size. In the main study, tumor formation was studied following the exposure to 5 mg/kgbw/day of E171 for 9 weeks (Phase I). E171 exposure showed a statistically nonsignificant increase in the number of colorectal tumors in these transgenic mice, as well as a statistically nonsignificant increase in the average number of mice with tumors. Gene expression changes in the colon were analyzed after exposure to 1, 2, and 5 mg/kgbw/day of E171 for 2, 7, 14, and 21 days (Phase II). Whole-genome mRNA analysis revealed the modulation of genes in pathways involved in the regulation of gene expression, cell cycle, post-translational modification, nuclear receptor signaling, and circadian rhythm. The processes associated with these genes might be involved in the enhanced tumor formation and suggest that E171 may contribute to tumor formation and progression by modulation of events related to inflammation, activation of immune responses, cell cycle, and cancer signaling.

4.
J Thromb Haemost ; 19(5): 1348-1363, 2021 05.
Article in English | MEDLINE | ID: mdl-33687782

ABSTRACT

INTRODUCTION: Vitamin K antagonists (VKA) and non-vitamin K oral antagonist anticoagulants (NOAC) are used in the clinic to reduce risk of thrombosis. However, they also exhibit vascular off-target effects. The aim of this study is to compare VKA and NOAC on atherosclerosis progression and calcification in an experimental setup. MATERIAL AND METHODS: Female Apoe-/- mice (age 12 weeks) were fed Western-type diet as control or supplemented with dabigatran etexilate or warfarin for 6 or 18 weeks. Vascular calcification was measured in whole aortic arches using µCT and [18 F]-NaF. Atherosclerotic burden was assessed by (immuno)histochemistry. Additionally, in vitro effects of warfarin, thrombin, and dabigatran on primary vascular smooth muscle cells (VSMC) were assessed. RESULTS: Short-term treatment with warfarin promoted formation of atherosclerotic lesions with a pro-inflammatory phenotype, and more rapid plaque progression compared with control and dabigatran. In contrast, dabigatran significantly reduced plaque progression compared with control. Long-term warfarin treatment significantly increased both presence and activity of plaque calcification compared with control and dabigatran. Calcification induced by warfarin treatment was accompanied by increased presence of uncarboxylated matrix Gla protein. In vitro, both warfarin and thrombin significantly increased VSMC oxidative stress and extracellular vesicle release, which was prevented by dabigatran. CONCLUSION: Warfarin aggravates atherosclerotic disease activity, increasing plaque inflammation, active calcification, and plaque progression. Dabigatran lacks undesired vascular side effects and reveals beneficial effects on atherosclerosis progression and calcification. The choice of anticoagulation impacts atherosclerotic disease by differential off target effect. Future clinical studies should test whether this beneficial effect also applies to patients.


Subject(s)
Atherosclerosis , Atrial Fibrillation , Animals , Anticoagulants , Atherosclerosis/drug therapy , Dabigatran , Female , Humans , Mice , Vitamin K , Warfarin
5.
Int J Mol Sci ; 22(1)2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33379217

ABSTRACT

Titanium dioxide (TiO2) is used as a food additive (E171) and can be found in sauces, icings, and chewing gums, as well as in personal care products such as toothpaste and pharmaceutical tablets. Along with the ubiquitous presence of TiO2 and recent insights into its potentially hazardous properties, there are concerns about its application in commercially available products. Especially the nano-sized particle fraction (<100 nm) of TiO2 warrants a more detailed evaluation of potential adverse health effects after ingestion. A workshop organized by the Dutch Office for Risk Assessment and Research (BuRO) identified uncertainties and knowledge gaps regarding the gastrointestinal absorption of TiO2, its distribution, the potential for accumulation, and induction of adverse health effects such as inflammation, DNA damage, and tumor promotion. This review aims to identify and evaluate recent toxicological studies on food-grade TiO2 and nano-sized TiO2 in ex-vivo, in-vitro, and in-vivo experiments along the gastrointestinal route, and to postulate an Adverse Outcome Pathway (AOP) following ingestion. Additionally, this review summarizes recommendations and outcomes of the expert meeting held by the BuRO in 2018, in order to contribute to the hazard identification and risk assessment process of ingested TiO2.


Subject(s)
Coloring Agents/adverse effects , Dietary Exposure/adverse effects , Nanoparticles/adverse effects , Titanium/adverse effects , Animals , Coloring Agents/chemistry , Coloring Agents/pharmacokinetics , Humans , Nanoparticles/chemistry , Titanium/chemistry , Titanium/pharmacokinetics , Toxicity Tests
6.
NPJ Syst Biol Appl ; 6(1): 34, 2020 10 26.
Article in English | MEDLINE | ID: mdl-33106503

ABSTRACT

How the network around ROS protects against oxidative stress and Parkinson's disease (PD), and how processes at the minutes timescale cause disease and aging after decades, remains enigmatic. Challenging whether the ROS network is as complex as it seems, we built a fairly comprehensive version thereof which we disentangled into a hierarchy of only five simpler subnetworks each delivering one type of robustness. The comprehensive dynamic model described in vitro data sets from two independent laboratories. Notwithstanding its five-fold robustness, it exhibited a relatively sudden breakdown, after some 80 years of virtually steady performance: it predicted aging. PD-related conditions such as lack of DJ-1 protein or increased α-synuclein accelerated the collapse, while antioxidants or caffeine retarded it. Introducing a new concept (aging-time-control coefficient), we found that as many as 25 out of 57 molecular processes controlled aging. We identified new targets for "life-extending interventions": mitochondrial synthesis, KEAP1 degradation, and p62 metabolism.


Subject(s)
Aging , Models, Biological , Parkinson Disease/metabolism , Parkinson Disease/therapy , Precision Medicine , Reactive Oxygen Species/metabolism , Computational Biology , Humans , Molecular Targeted Therapy , Oxidative Stress , Parkinson Disease/physiopathology
7.
Oxid Med Cell Longev ; 2019: 5204218, 2019.
Article in English | MEDLINE | ID: mdl-31485294

ABSTRACT

Chronic exposure to respiratory stressors increases the risk for pulmonary and cardiovascular diseases. Previously, we have shown that cigarette smoke extract (CSE) triggers the release of CD63+CD81+ and tissue factor (TF)+ procoagulant extracellular vesicles (EVs) by bronchial epithelial cells via depletion of cell surface thiols. Here, we hypothesized that this represents a universal response for different pulmonary cell types and respiratory exposures. Using bead-based flow cytometry, we found that bronchial epithelial cells and pulmonary fibroblasts, but not pulmonary microvascular endothelial cells or macrophages, release CD63+CD81+ and TF+ EVs in response to CSE. Cell surface thiols decreased in all cell types upon CSE exposure, whereas depletion of cell surface thiols using bacitracin only triggered EV release by epithelial cells and fibroblasts. The thiol-antioxidant NAC prevented the EV induction by CSE in epithelial cells and fibroblasts. Exposure of epithelial cells to occupational silica nanoparticles and particulate matter (PM) from outdoor air pollution also enhanced EV release. Cell surface thiols were mildly decreased and NAC partly prevented the EV induction for PM10, but not for silica and PM2.5. Taken together, induction of procoagulant EVs is a cell type-specific response to CSE. Moreover, induction of CD63+CD81+ and TF+ EVs in bronchial epithelial cells appears to be a universal response to various respiratory stressors. TF+ EVs may serve as biomarkers of exposure and/or risk in response to respiratory exposures and may help to guide preventive treatment decisions.


Subject(s)
Extracellular Vesicles/metabolism , Respiratory System/pathology , Tetraspanin 28/metabolism , Tetraspanin 30/metabolism , Humans , Particulate Matter
8.
Clin Transl Sci ; 12(6): 609-616, 2019 11.
Article in English | MEDLINE | ID: mdl-31305025

ABSTRACT

Four complementary approaches were used to investigate acetaminophen overdose as a risk factor for Parkinson's disease (PD). Circulating microRNAs (miRNAs) serum profiles from acetaminophen-overdosed patients were compared with patients with terminal PD, revealing four shared miRNAs. Similarities were found among molecular structures of dopamine (DA), acetaminophen, and two known PD inducers indicating affinity for dopaminergic transport. Potential interactions between acetaminophen and the human DA transporter were confirmed by molecular docking modeling and binding free energy calculations. Thus, it is plausible that acetaminophen is taken up by the dopaminergic transport system into the substantia nigra (SN). A ChEMBL query identified proteins that are similarly targeted by DA and acetaminophen. Here, we highlight CYP3A4, present in the SN, a predominant metabolizer of acetaminophen into its toxic metabolite N-acetyl-p-benzoquinone imine and shown to be regulated in PD. Overall, based on our results, we hypothesize that overdosing of acetaminophen is a potential risk factor for parkinsonism.


Subject(s)
Acetaminophen/toxicity , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine/metabolism , Drug Overdose/complications , Parkinson Disease/etiology , Acetaminophen/chemistry , Acetaminophen/pharmacokinetics , Adolescent , Adult , Benzoquinones/metabolism , Benzoquinones/toxicity , Circulating MicroRNA/blood , Crystallography, X-Ray , Cytochrome P-450 CYP3A/metabolism , Dopamine/chemistry , Dopamine Plasma Membrane Transport Proteins/chemistry , Dopamine Plasma Membrane Transport Proteins/ultrastructure , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drug Overdose/blood , Drug Overdose/etiology , Female , Humans , Imines/metabolism , Imines/toxicity , Male , Middle Aged , Models, Animal , Molecular Docking Simulation , Molecular Structure , Parkinson Disease/blood , Parkinson Disease/pathology , Risk Factors , Sequence Alignment , Substantia Nigra/metabolism , Substantia Nigra/pathology , Young Adult
9.
Ann Transl Med ; 5(6): 131, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28462211

ABSTRACT

Oxidative and nitrosative stress are an umbrella term for pathophysiological processes that involve free radical generation during inflammation. In this review, the involvement of reactive oxygen and nitrogen species is evaluated during lung ischemia-reperfusion injury (LIRI) from a surgical point of view. The main biochemical and cellular mechanisms behind free radical generation are discussed, together with surgical procedures that may cause reperfusion injury. Finally, different therapeutic strategies are further explored. A literature search was performed, searching for "lung ischemia reperfusion injury", "reperfusion injury", "large animal model" and different search terms for each section: "surgery", "treatment", "cellular mechanism", or "enzyme". Although reperfusion injury is not an uncommon entity and there is a lot of evidence concerning myocardial ischemia-reperfusion injury, in the lung this phenomenon is less extensively described and studies in large animals are not easy to come by. With increasing number of patients on waiting lists for lung transplant, awareness for this entity should all but rise.

10.
Chem Res Toxicol ; 29(9): 1428-38, 2016 09 19.
Article in English | MEDLINE | ID: mdl-27509014

ABSTRACT

In recent years, it has been shown that free radicals not only react directly with DNA but also regulate epigenetic processes such as DNA methylation, which may be relevant within the context of, for example, tumorigenesis. However, how these free radicals impact the epigenome remains unclear. We therefore investigated whether methyl and hydroxyl radicals, formed by tert-butyl hydroperoxide (TBH), change temporal DNA methylation patterns and how this interferes with genome-wide gene expression. At three time points, TBH-induced radicals in HepG2 cells were identified by electron spin resonance spectroscopy. Total 5-methylcytosine (5mC) levels were determined by liquid chromatography and tandem mass spectrometry and genome-wide changes in 5mC and gene expression by microarrays. Induced methylome changes rather represent an adaptive response to the oxidative stress-related reactions observed in the transcriptome. More specifically, we found that methyl radicals did not induce DNA methylation directly. An initial oxidative and alkylating stress-related response of the transcriptome during the early phase of TBH treatment was followed by an epigenetic response associated with cell survival signaling. Also, we identified genes of which the expression seems directly regulated by DNA methylation. This work suggests an important role of the methylome in counter-regulating primary oxidative and alkylating stress responses in the transcriptome to restore normal cell function. Altogether, the methylome may play an important role in counter-regulating primary oxidative and alkylating stress responses in the transcriptome presumably to restore normal cell function.


Subject(s)
DNA Methylation , Oxidative Stress/genetics , Stress, Physiological/genetics , Transcriptome/genetics , Alkylation , Chromatography, Liquid , Free Radicals/chemistry , Hep G2 Cells , Humans , Spectrometry, Mass, Electrospray Ionization
11.
Sci Rep ; 6: 22854, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26973284

ABSTRACT

Genistein, a natural food compound mainly present in soybeans, is considered a potent antioxidant and to improve glucose homeostasis. However, its mechanism of action remains poorly understood. Here, we analyzed whether genistein could antagonize the progression of the hyperinsulinemic normoglycemic state (pre-diabetes) toward full-blown T2DM in Zucker Diabetic Fatty (ZDF) rats by decreasing mitochondrial oxidative stress and improving skeletal muscle oxidative capacity. Rats were assigned to three groups: (1) lean control (CNTL), (2) fa/fa CNTL, and (3) fa/fa genistein (GEN). GEN animals were subjected to a 0.02% (w/w) genistein-enriched diet for 8 weeks, whereas CNTL rats received a standard diet. We show that genistein did not affect the overall response to a glucose challenge in ZDF rats. In fact, genistein may exacerbate glucose intolerance as fasting glucose levels were significantly higher in fa/fa GEN (17.6 ± 0.7 mM) compared with fa/fa CNTL animals (14.9 ± 1.4 mM). Oxidative stress, established by electron spin resonance (ESR) spectroscopy, carbonylated protein content and UCP3 levels, remained unchanged upon dietary genistein supplementation. Furthermore, respirometry measurements revealed no effects of genistein on mitochondrial function. In conclusion, dietary genistein supplementation did not improve glucose homeostasis, alleviate oxidative stress, or augment skeletal muscle metabolism in ZDF rats.


Subject(s)
Diet , Genistein/pharmacology , Insulin Resistance , Muscle, Skeletal/drug effects , Oxidative Stress/drug effects , Animals , Blood Glucose/metabolism , Body Weight/drug effects , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Genistein/administration & dosage , Glucose/metabolism , Glucose Tolerance Test , Homeostasis/drug effects , Mitochondria, Muscle/drug effects , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Oxidation-Reduction/drug effects , Phytoestrogens/administration & dosage , Phytoestrogens/pharmacology , Rats, Zucker
12.
Atherosclerosis ; 245: 212-21, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26724532

ABSTRACT

BACKGROUND: Short term dietary nitrate or nitrite supplementation has nitric oxide (NO)-mediated beneficial effects on blood pressure and inflammation and reduces mitochondrial oxygen consumption, possibly preventing hypoxia. As these processes are implicated in atherogenesis, dietary nitrate was hypothesized to prevent plaque initiation, hypoxia and inflammation. AIMS: Study prolonged nitrate supplementation on atherogenesis, hypoxia and inflammation in low density lipoprotein receptor knockout mice (LDLr(-/-)). METHODS: LDLr(-/-) mice were administered sodium-nitrate or equimolar sodium-chloride in drinking water alongside a western-type diet for 14 weeks to induce atherosclerosis. Plasma nitrate, nitrite and hemoglobin-bound nitric oxide were measured by chemiluminescence and electron parametric resonance, respectively. RESULTS: Plasma nitrate levels were elevated after 14 weeks of nitrate supplementation (NaCl: 40.29 ± 2.985, NaNO3: 78.19 ± 6.837, p < 0.0001). However, prolonged dietary nitrate did not affect systemic inflammation, hematopoiesis, erythropoiesis and plasma cholesterol levels, suggesting no severe side effects. Surprisingly, neither blood pressure, nor atherogenesis were altered. Mechanistically, plasma nitrate and nitrite were elevated after two weeks (NaCl: 1.0 ± 0.2114, NaNO3: 3.977 ± 0.7371, p < 0.0001), but decreased over time (6, 10 and 14 weeks). Plasma nitrite levels even reached baseline levels at 14 weeks (NaCl: 0.7188 ± 0.1072, NaNO3: 0.9723 ± 0.1279 p = 0.12). Also hemoglobin-bound NO levels were unaltered after 14 weeks. This compensation was not due to altered eNOS activity or conversion into peroxynitrite and other RNI, suggesting reduced nitrite formation or enhanced nitrate/nitrite clearance. CONCLUSION: Prolonged dietary nitrate supplementation resulted in compensation of nitrite and NO levels and did not affect atherogenesis or exert systemic side effects.


Subject(s)
Atherosclerosis/etiology , Dietary Supplements/toxicity , Nitrites/toxicity , Animals , Atherosclerosis/metabolism , Disease Models, Animal , Mice , Mice, Knockout , Nitrogen Oxides/metabolism
13.
J Agric Food Chem ; 56(24): 11675-82, 2008 Dec 24.
Article in English | MEDLINE | ID: mdl-19035659

ABSTRACT

Witch hazel (Hamamelis virginia) extracts are used in traditional medicine. They are particularly rich in gallate esters included in proanthocyanidins, hydrolyzable tannins (galloylated sugars), and methyl gallate. This study examines the response of human colon cancer cells to treatment with fractions obtained from a witch hazel polyphenolic extract. The results are compared with those obtained previously with homologous fractions from grape (less galloylated) and pine (nongalloylated). Witch hazel fractions were the most efficient in inhibiting cell proliferation in HT29 and HCT116 human colon cancer cell lines, which clearly shows that the more galloylated the fractions, the more effective they were at inhibiting proliferation of colon cancer cells. Witch hazel fractions were, in addition, more potent in arresting the cell cycle at the S phase and inducing apoptosis; they also induced a significant percentage of necrosis. Interestingly, the apoptosis and cell cycle arrest effects induced were proportional to their galloylation. Moreover, witch hazel fractions with a high degree of galloylation were also the most effective as scavengers of both hydroxyl and superoxide radicals and in protecting against DNA damage triggered by the hydroxyl radical system. These findings provide a better understanding of the structure-bioactivity relationships of polyphenolics, which should be of assistance in choosing an appropriate source and preparing a rational design for formulations of plant polyphenols in nutritional supplements.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Colonic Neoplasms/drug therapy , Gallic Acid/chemistry , Hamamelis/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Flavonoids/chemistry , Flavonoids/pharmacology , Gallic Acid/analogs & derivatives , Humans , Phenols/chemistry , Phenols/pharmacology , Polyphenols , Structure-Activity Relationship
14.
Environ Mol Mutagen ; 46(2): 71-80, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15880737

ABSTRACT

Exposure to ambient particulate matter (PM) has been linked to several adverse health effects. Since vehicular traffic is a PM source of growing importance, we sampled total suspended particulate (TSP), PM(10), and PM(2.5) at six urban locations with pronounced differences in traffic intensity. The mutagenicity, DNA-adduct formation, and induction of oxidative DNA damage by the samples were studied as genotoxicological parameters, in relation to polycyclic aromatic hydrocarbon (PAH) levels, elemental composition, and radical-generating capacity (RGC) as chemical characteristics. We found pronounced differences in the genotoxicity and chemical characteristics of PM from the various locations, although we could not establish a correlation between traffic intensity and any of these characteristics for any of the PM size fractions. Therefore, the differences between locations may be due to local sources of PM, other than traffic. The concentration of total (carcinogenic) PAHs correlated positively with RGC, direct and S9-mediated mutagenicity, as well as the induction of DNA adducts and oxidative DNA damage. The interaction between total PAHs and transition metals correlated positively with DNA-adduct formation, particularly from the PM(2.5) fraction. RGC was not associated with one specific PM size fraction, but mutagenicity and DNA reactivity after metabolic activation were relatively high in PM(10) and PM(2.5), when compared with TSP. We conclude that the toxicological characteristics of urban PM samples show pronounced differences, even when PM concentrations at the sample sites are comparable. This implies that emission reduction strategies that take chemical and toxicological characteristics of PM into account may be useful for reducing the health risks associated with PM exposure.


Subject(s)
Air Pollutants/chemistry , Air Pollutants/toxicity , Carcinogens, Environmental/chemistry , Carcinogens, Environmental/toxicity , Gasoline/toxicity , Mutagens , Animals , Chemical Phenomena , Chemistry, Physical , DNA Adducts/chemistry , Motor Vehicles , Mutagenicity Tests/statistics & numerical data , Netherlands , Oxidative Stress , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...