Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
NMR Biomed ; 23(9): 1033-7, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20963799

ABSTRACT

The T(1) values of metabolites were measured in eight subjects with clinically definite multiple sclerosis (MS) having at least one large brain lesion (2.6 ± 0.7 mL) and in eight age- and sex-matched healthy controls. MRS examinations were conducted at 1.5 T using point-resolved spectroscopy (PRESS) (TE = 30 ms, TR = 530, 750, 1200, 1500, 3500, 5000 ms). Spectra were acquired from a voxel placed in the largest lesion in the subject with MS, and in a corresponding voxel (same size and region) in normal white matter (NWM) in the matched control, and were fitted using LCModel. As there are regional variations in metabolite and water T(1) and metabolite signal areas, careful placement of the control voxel was necessary to measure subtle differences between the lesions and NWM. The T(1) and T(1)-corrected signal areas of creatine were the same in MS lesions as in controls. The T(1) values of choline were significantly shorter in MS lesions located in occipital and parietal, but not in frontal, white matter. N-Acetylaspartate (NAA) and myoinositol T(1) values in MS lesions were similar to those in NWM; however, the area of myoinositol correlated directly with lesion water T(1), and the area of NAA correlated inversely with lesion water T(1). MR spectra acquired at short TR require T(1) correction of choline for accurate quantification. Careful voxel placement in controls to match lesion location in subjects with MS enables a clearer view of the subtle changes in lesions.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Protons , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Choline/metabolism , Humans , Inositol/metabolism , Water
2.
NMR Biomed ; 22(3): 349-54, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19107764

ABSTRACT

Magnetic resonance spectroscopy (MRS) has been coupled with a multi-echo imaging sequence to determine the relaxation corrected signal areas of the metabolites and the tissue water. Stimulated echo acquisition mode (STEAM) spectra (TE/TM/TR 30/13.7/5000 ms) acquired from gray and white matter voxels in 43 healthy volunteers were fit using LCModel. Corresponding water signals, measured using a multi-echo T(2) imaging sequence, were fit with a Non-Negative Least Squares algorithm. Using this approach the water area could be T(1) and T(2) corrected for all three water compartments: cerebrospinal fluid (CSF), intra- and extra-cellular water, and myelin water. The image-based water measurement is an improvement over spectroscopy methods because it can be more sensitive to water changes in diseased tissue. Metabolite areas were also corrected for relaxation losses. In occipital gray matter, the concentrations of Cho, Cr, and N-acetyl aspartate (NAA) were 1.27 (0.06), 8.9 (0.3), and 9.3 (0.3) mmol/L tissue, respectively and in parietal white matter they were 1.90 (0.05), 7.9 (0.2), and 9.8 (0.2) mmol/L tissue. The Cho and Cr concentrations were different in occipital gray compared to parietal white matter (p < 0.0001 and <0.005, respectively).


Subject(s)
Brain/metabolism , Metabolome , Water/metabolism , Adult , Calibration , Humans , Magnetic Resonance Spectroscopy
3.
NMR Biomed ; 18(1): 14-8, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15455460

ABSTRACT

T2 of NAA, creatine and choline-containing compounds were measured in posterior frontal white matter and occipital grey matter in 10 healthy human volunteers. Decay curves comprised signals from eight TE times ranging from 30 to 800 ms with TR 2000 ms acquired with a PRESS sequence on a 1.5 T clinical scanner. Simulations were conducted to assess the precision of T2 estimates from decay curves comprising varying numbers and ranges of TE points. Mean and standard errors for T2s of NAA, creatine and choline-containing compounds were 300(8), 169(3) and 239(4) ms in posterior frontal white matter and 256(6), 159(8) and 249(8) ms in occipital grey matter. In vivo T2s found for choline and NAA were shorter than the T2s in the literature. The elevation of literature T2s is accounted for by the simulation results, which demonstrated that there is a bias towards lengthened T2s when T2 is measured with a maximum TE approximately T2. Concentration estimates are at risk of being underestimated if previously reported T2 corrections are used.


Subject(s)
Algorithms , Astrocytes/metabolism , Choline/metabolism , Creatine/metabolism , Frontal Lobe/metabolism , Magnetic Resonance Spectroscopy/methods , Neurons/metabolism , Occipital Lobe/metabolism , Adult , Female , Humans , Male , Protons , Reference Values , Reproducibility of Results , Sensitivity and Specificity
4.
NMR Biomed ; 16(8): 503-9, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14696008

ABSTRACT

Saturation recovery spectra (STEAM) were acquired at 1.5 T with 7 TRs ranging from 530 to 5000 ms and a constant TE of 30 ms in voxels (7.2 ml) located in occipital grey, parietal white and frontal white matter (10 subjects each location). Spectra were also acquired at 7, 21 and 37 degrees C from separate 100 mm solutions of inositol (Ins), choline-containing compounds (Cho), N-acetyl-aspartate (NAA) and creatine. Simulations of T(1) fits with 2, 3 and 7 TRs demonstrated that at typical SNR there is potential for both inaccurate and biased results. In vivo, different metabolites had significantly different T(1)s within the same brain volume. The same order from shortest to longest T(1) (Ins, Cho, NAA, creatine) was found for all three brain regions. The order (Ins, NAA, creatine, Cho) was found in the metabolite solutions and was consistent with a simple model in which T(1) is inversely proportional to molecular weight. For all individual metabolites, T(1) increased from occipital grey to parietal white to frontal white matter. This study demonstrates that, in spectra acquired with TR near 1 s, T(1) weightings are substantially different for metabolites within a single tissue and also for the same metabolites in different tissues.


Subject(s)
Cerebral Cortex/metabolism , Magnetic Resonance Spectroscopy/methods , Models, Biological , Astrocytes/metabolism , Computer Simulation , Female , Frontal Lobe/metabolism , Humans , Male , Nerve Fibers, Myelinated/metabolism , Neurons/metabolism , Occipital Lobe/metabolism , Parietal Lobe/metabolism , Protons , Reproducibility of Results , Sensitivity and Specificity , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...