Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 4241, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32901006

ABSTRACT

Land vegetation is currently taking up large amounts of atmospheric CO2, possibly due to tree growth stimulation. Extant models predict that this growth stimulation will continue to cause a net carbon uptake this century. However, there are indications that increased growth rates may shorten trees' lifespan and thus recent increases in forest carbon stocks may be transient due to lagged increases in mortality. Here we show that growth-lifespan trade-offs are indeed near universal, occurring across almost all species and climates. This trade-off is directly linked to faster growth reducing tree lifespan, and not due to covariance with climate or environment. Thus, current tree growth stimulation will, inevitably, result in a lagged increase in canopy tree mortality, as is indeed widely observed, and eventually neutralise carbon gains due to growth stimulation. Results from a strongly data-based forest simulator confirm these expectations. Extant Earth system model projections of global forest carbon sink persistence are likely too optimistic, increasing the need to curb greenhouse gas emissions.


Subject(s)
Carbon Sequestration , Carbon/metabolism , Trees/growth & development , Climate Change , Computer Simulation , Longevity , Mortality , Trees/metabolism
2.
Nat Commun ; 8(1): 288, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28819277

ABSTRACT

Various studies report substantial increases in intrinsic water-use efficiency (W i ), estimated using carbon isotopes in tree rings, suggesting trees are gaining increasingly more carbon per unit water lost due to increases in atmospheric CO2. Usually, reconstructions do not, however, correct for the effect of intrinsic developmental changes in W i as trees grow larger. Here we show, by comparing W i across varying tree sizes at one CO2 level, that ignoring such developmental effects can severely affect inferences of trees' W i . W i doubled or even tripled over a trees' lifespan in three broadleaf species due to changes in tree height and light availability alone, and there are also weak trends for Pine trees. Developmental trends in broadleaf species are as large as the trends previously assigned to CO2 and climate. Credible future tree ring isotope studies require explicit accounting for species-specific developmental effects before CO2 and climate effects are inferred.Intrinsic water-use efficiency (W i ) reconstructions using tree rings often disregard developmental changes in W i as trees age. Here, the authors compare W i across varying tree sizes at a fixed CO2 level and show that ignoring developmental changes impacts conclusions on trees' W i responses to CO2 or climate.


Subject(s)
Carbon Dioxide/metabolism , Climate , Trees/metabolism , Water/metabolism , Algorithms , Carbon Isotopes/metabolism , Cedrela/growth & development , Cedrela/metabolism , Fagus/growth & development , Fagus/metabolism , Models, Theoretical , Pinus/growth & development , Pinus/metabolism , Quercus/growth & development , Quercus/metabolism , Species Specificity , Temperature , Time Factors , Trees/growth & development
3.
Nature ; 519(7543): 344-8, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25788097

ABSTRACT

Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.


Subject(s)
Carbon Dioxide/analysis , Carbon Sequestration , Rainforest , Atmosphere/chemistry , Biomass , Brazil , Carbon/analysis , Carbon/metabolism , Carbon Dioxide/metabolism , Plant Stems/metabolism , Trees/growth & development , Trees/metabolism , Tropical Climate , Wood/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...