Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 576(7787): 429-432, 2019 12.
Article in English | MEDLINE | ID: mdl-31853079

ABSTRACT

Metal-to-insulator transitions1 driven by strong electronic correlations occur frequently in condensed matter systems, and are associated with remarkable collective phenomena in solids, including superconductivity and magnetism. Tuning and control of the transition holds the promise of low-power, ultrafast electronics2, but the relative roles of doping, chemistry, elastic strain and other applied fields have made systematic understanding of such transitions difficult. Here we show that existing data3-5 on the tuning of metal-to-insulator transitions in perovskite transition-metal oxides through ionic size effects provides evidence of large systematic effects on the phase transition owing to dynamical fluctuations of the elastic strain, which have usually been neglected6. We illustrate this using a simple yet quantitative statistical mechanical calculation in a model that incorporates cooperative lattice distortions coupled to the electronic degrees of freedom. We reproduce the observed dependence of the transition temperature on the cation radius in the well studied manganite7 and nickelate8 materials. Because elastic couplings are generally strong, we anticipate that these conclusions will generalize to all metal-to-insulator transitions that couple to a change in lattice symmetry.

2.
Phys Rev Lett ; 109(4): 043002, 2012 Jul 27.
Article in English | MEDLINE | ID: mdl-23006082

ABSTRACT

We consider performing adiabatic rapid passage (ARP) using frequency-swept driving pulses to excite a collection of interacting two-level systems. Such a model arises in a wide range of many-body quantum systems, such as cavity QED or quantum dots, where a nonlinear component couples to light. We analyze the one-dimensional case using the Jordan-Wigner transformation, as well as the mean-field limit where the system is described by a Lipkin-Meshkov-Glick Hamiltonian. These limits provide complementary insights into the behavior of many-body systems under ARP, suggesting our results are generally applicable. We demonstrate that ARP can be used for state preparation in the presence of interactions, and identify the dependence of the required pulse shapes on the interaction strength. In general, interactions increase the pulse bandwidth required for successful state transfer, introducing new restrictions on the pulse forms required.

3.
Phys Rev Lett ; 107(4): 040401, 2011 Jul 22.
Article in English | MEDLINE | ID: mdl-21866986

ABSTRACT

We study the stability of collective amplitude excitations in nonequilibrium polariton condensates. These excitations correspond to renormalized upper polaritons and to the collective amplitude modes of atomic gases and superconductors. They would be present following a quantum quench or could be created directly by resonant excitation. We show that uniform amplitude excitations are unstable to the production of excitations at finite wave vectors, leading to the formation of density-modulated phases. The physical processes causing the instabilities can be understood by analogy to optical parametric oscillators and the atomic Bose supernova.

SELECTION OF CITATIONS
SEARCH DETAIL
...