Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 239: 113951, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759295

ABSTRACT

One of the main concerns in oligonucleotide-based therapeutics is achieving a successful cell targeting while avoiding drug degradation and clearance. Nanoparticulated drug delivery systems have emerged as a way of overcoming these issues. Among them, membrane-coated nanoparticles are of increasing relevance mainly due to their enhanced cellular uptake, immune evasion and biocompatibility. In this study, we designed and elaborated a simple and highly tuneable biomimetic drug delivery nanosystem based on a polymeric core surrounded by extracellular vesicles (EVs)-derived membranes. This strategy should allow the nanosystems to benefit from the properties conferred by the membrane proteins present in EVs membrane, key paracrine mediators. The developed systems were able to successfully encapsulate the required oligonucleotides. Also, their characterisation through already well standardised methods (dynamic light scattering, transmission electron microscopy and nanoparticle tracking analysis) and by fluorescence cross-correlation spectroscopy (FCCS) showed the desired core-shell structure. The cellular uptake using different cell types further confirmed the coating though an enhancement in cell internalisation of the developed biomimetic nanoparticles. This study brings up new possibilities for GapmeR delivery as it might be a base for the development of new delivery systems for gene therapy.


Subject(s)
Biomimetic Materials , Extracellular Vesicles , Genetic Therapy , Nanoparticles , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Nanoparticles/chemistry , Humans , Biomimetic Materials/chemistry , Genetic Therapy/methods , Particle Size , Biomimetics/methods , Oligonucleotides/chemistry , Drug Delivery Systems
2.
Article in English | MEDLINE | ID: mdl-37037204

ABSTRACT

Osteoclasts are the cells responsible for the bone resorption process during bone remodeling. In a healthy situation, this process results from an equilibrium between new matrix formation by osteoblast and matrix resorption by osteoclast. Osteoporosis (OP) is a systemic bone disease characterized by a decreased bone mass density and alterations in bone microarchitecture, increasing fracture predisposition. Despite the variety of available therapies for OP management there is a growing gap in its treatment associated to the low patients' adherence owing to concerns related with long-term efficacy or safety. This makes the development of new and safe treatments necessary. Among the newly developed strategies, the use of synthetic and natural nanoparticles to modulate osteoclasts differentiation, activity, apoptosis or crosstalk with osteoblasts have arisen. Synthetic nanoparticles exert their therapeutic effect either by loading antiresorptive drugs or including molecules for osteoclasts gene regulation. Moreover, this control over osteoclasts can be improved by their targeting to bone extracellular matrix or osteoclast membranes. Furthermore, natural nanoparticles, also known as extracellular vesicles, have been identified to play a key role in bone homeostasis. Consequently, these systems have been widely studied to control osteoblasts and osteoclasts under variable environments. Additionally, the ability to bioengineer extracellular vesicles has allowed to obtain biomimetic systems with desirable characteristics as drug carriers for osteoclasts. The analyzed information reveals the possibility of modulating osteoclasts by different mechanisms through nanoparticles decreasing bone resorption. These findings suggest that controlling osteoclast activity using nanoparticles has the potential to improve osteoporosis management. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Subject(s)
Bone Resorption , Nanoparticles , Osteoporosis , Humans , Osteoclasts/physiology , Bone Resorption/drug therapy , Osteoblasts/physiology , Osteoporosis/drug therapy , Nanoparticles/therapeutic use , Cell Differentiation
3.
Drug Deliv Transl Res ; 11(2): 598-607, 2021 04.
Article in English | MEDLINE | ID: mdl-33625680

ABSTRACT

Gene therapy has emerged as a tool for the treatment of systemic metabolic disorders as osteoporosis (OP). However, the design of a suitable vehicle able to efficiently load and release the genetic material on the target cells is still a challenge. Moreover, the internalization pathway of nanosystems has been described to be dependent on their surface characteristics and the cell type evaluated. In this study, we aim at obtaining PEGylated lipid-PLGA nanoparticles (NPs) with variable surface charge able to incorporate GapmeRs (single-strand antisense oligonucleotides) for OP treatment. Nanoparticles showing negative, positive, and neutral surface charge were obtained by modulating the lipid composition. All formulations showed a remarkably low polydispersity index with adequate size. NPs were loaded with GapmeRs showing a high encapsulation efficiency and a surface charge-independent oligonucleotide loading. All the formulations were adequately internalized by MSCs. Future experiments will be devoted to use the developed formulations to clarify if the intracellular distribution of hybrid NPs on mesenchymal stem cells (MSCs) is dependent on surface charge. This portfolio of NPs will serve as a tool to analyze the effect of NP surface charge on gene therapy efficiency.


Subject(s)
Nanoparticles , Polymers , Drug Carriers , Genetic Therapy , Lipids , Oligonucleotides , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...