Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38168304

ABSTRACT

Prediction from polygenic scores may be confounded sources of passive gene-environment correlation (rGE; e.g. population stratification, assortative mating, and environmentally mediated effects of parental genotype on child phenotype). Using genomic data from 10,000 twin pairs, we asked whether polygenic scores from the recent externalising genome-wide association study predicted conduct problems, ADHD symptomology and callous-unemotional traits, and whether these predictions are biased by rGE. We ran regression models including within-family and between-family polygenic scores, to separate the direct genetic influence on a trait from environmental influences that correlate with genes (indirect genetic effects). Findings suggested that this externalising polygenic score is a good index of direct genetic influence on conduct and ADHD-related symptoms across development, with minimal bias from rGE, although the polygenic score predicted less variance in CU traits. Post-hoc analyses showed some indirect genetic effects acting on a common factor indexing stability of conduct problems across time and contexts.

2.
Mol Psychiatry ; 27(11): 4550-4560, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36071108

ABSTRACT

Identifying brain alterations associated with suicidal thoughts and behaviors (STBs) in young people is critical to understanding their development and improving early intervention and prevention. The ENIGMA Suicidal Thoughts and Behaviours (ENIGMA-STB) consortium analyzed neuroimaging data harmonized across sites to examine brain morphology associated with STBs in youth. We performed analyses in three separate stages, in samples ranging from most to least homogeneous in terms of suicide assessment instrument and mental disorder. First, in a sample of 577 young people with mood disorders, in which STBs were assessed with the Columbia Suicide Severity Rating Scale (C-SSRS). Second, in a sample of young people with mood disorders, in which STB were assessed using different instruments, MRI metrics were compared among healthy controls without STBs (HC; N = 519), clinical controls with a mood disorder but without STBs (CC; N = 246) and young people with current suicidal ideation (N = 223). In separate analyses, MRI metrics were compared among HCs (N = 253), CCs (N = 217), and suicide attempters (N = 64). Third, in a larger transdiagnostic sample with various assessment instruments (HC = 606; CC = 419; Ideation = 289; HC = 253; CC = 432; Attempt=91). In the homogeneous C-SSRS sample, surface area of the frontal pole was lower in young people with mood disorders and a history of actual suicide attempts (N = 163) than those without a lifetime suicide attempt (N = 323; FDR-p = 0.035, Cohen's d = 0.34). No associations with suicidal ideation were found. When examining more heterogeneous samples, we did not observe significant associations. Lower frontal pole surface area may represent a vulnerability for a (non-interrupted and non-aborted) suicide attempt; however, more research is needed to understand the nature of its relationship to suicide risk.


Subject(s)
Suicidal Ideation , Suicide, Attempted , Adolescent , Humans , Brain , Neuroimaging/methods , Mood Disorders
4.
Nat Neurosci ; 25(4): 421-432, 2022 04.
Article in English | MEDLINE | ID: mdl-35383335

ABSTRACT

Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging.


Subject(s)
Genome-Wide Association Study , Longevity , Aging/genetics , Brain , Humans , Longevity/genetics , Magnetic Resonance Imaging
5.
Neurosci Biobehav Rev ; 131: 466-478, 2021 12.
Article in English | MEDLINE | ID: mdl-34587501

ABSTRACT

The thalamus is a central brain structure crucially involved in cognitive, emotional, sensory, and motor functions and is often reported to be involved in the pathophysiology of neurological and psychiatric disorders. The functional subdivision of the thalamus warrants morphological investigation on the level of individual subnuclei. In addition to volumetric measures, the investigation of other morphological features may give additional insights into thalamic morphology. For instance, shape features offer a higher spatial resolution by revealing small, regional differences that are left undetected in volumetric analyses. In this review, we discuss the benefits and limitations of recent advances in neuroimaging techniques to investigate thalamic morphology in vivo, leading to our proposed methodology. This methodology consists of available pipelines for volume and shape analysis, focussing on the morphological features of volume, thickness, and surface area. We demonstrate this combined approach in a Parkinson's disease cohort to illustrate their complementarity. Considering our findings, we recommend a combined methodology as it allows for more sensitive investigation of thalamic morphology in clinical populations.


Subject(s)
Parkinson Disease , Thalamus , Brain , Humans , Magnetic Resonance Imaging/methods , Neuroimaging , Thalamus/diagnostic imaging
6.
Mov Disord ; 36(11): 2583-2594, 2021 11.
Article in English | MEDLINE | ID: mdl-34288137

ABSTRACT

BACKGROUND: Brain structure abnormalities throughout the course of Parkinson's disease have yet to be fully elucidated. OBJECTIVE: Using a multicenter approach and harmonized analysis methods, we aimed to shed light on Parkinson's disease stage-specific profiles of pathology, as suggested by in vivo neuroimaging. METHODS: Individual brain MRI and clinical data from 2357 Parkinson's disease patients and 1182 healthy controls were collected from 19 sources. We analyzed regional cortical thickness, cortical surface area, and subcortical volume using mixed-effects models. Patients grouped according to Hoehn and Yahr stage were compared with age- and sex-matched controls. Within the patient sample, we investigated associations with Montreal Cognitive Assessment score. RESULTS: Overall, patients showed a thinner cortex in 38 of 68 regions compared with controls (dmax  = -0.20, dmin  = -0.09). The bilateral putamen (dleft  = -0.14, dright  = -0.14) and left amygdala (d = -0.13) were smaller in patients, whereas the left thalamus was larger (d = 0.13). Analysis of staging demonstrated an initial presentation of thinner occipital, parietal, and temporal cortices, extending toward rostrally located cortical regions with increased disease severity. From stage 2 and onward, the bilateral putamen and amygdala were consistently smaller with larger differences denoting each increment. Poorer cognition was associated with widespread cortical thinning and lower volumes of core limbic structures. CONCLUSIONS: Our findings offer robust and novel imaging signatures that are generally incremental across but in certain regions specific to disease stages. Our findings highlight the importance of adequately powered multicenter collaborations. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Brain/diagnostic imaging , Brain/pathology , Humans , Magnetic Resonance Imaging , Neuroimaging , Parkinson Disease/complications , Thalamus/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...