Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 23(6): 101229, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32554190

ABSTRACT

Ex vivo human tumor models have emerged as promising, yet complex tools to study cancer immunotherapy response dynamics. Here, we present a strategy that integrates empirical data from an ex vivo human system with computational models to interpret the response dynamics of a clinically prescribed PD-1 inhibitor, nivolumab, in head and neck squamous cell carcinoma (HNSCC) biopsies (N = 50). Using biological assays, we show that drug-induced variance stratifies samples by T helper type 1 (Th1)-related pathways. We then built a systems biology network and mathematical framework of local and global sensitivity analyses to simulate and estimate antitumor phenotypes, which implicate a dynamic role for the induction of Th1-related cytokines and T cell proliferation patterns. Together, we describe a multi-disciplinary strategy to analyze and interpret the response dynamics of PD-1 blockade using heterogeneous ex vivo data and in silico simulations, which could provide researchers a powerful toolset to interrogate immune checkpoint inhibitors.

2.
Sci Rep ; 7(1): 1502, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28473715

ABSTRACT

KRAS mutation status can distinguish between metastatic colorectal carcinoma (mCRC) patients who may benefit from therapies that target the epidermal growth factor receptor (EGFR), such as cetuximab. However, patients whose tumors harbor mutant KRAS (codons 12/13, 61 and 146) are often excluded from EGFR-targeted regimens, while other patients with wild type KRAS will sometimes respond favorably to these same drugs. These conflicting observations suggest that a more robust approach to individualize therapy may enable greater frequency of positive clinical outcome for mCRC patients. Here, we utilized alive tumor tissues in ex-vivo platform termed CANscript, which preserves the native tumor heterogeneity, in order to interrogate the antitumor effects of EGFR-targeted drugs in mCRC (n = 40). We demonstrated that, irrespective of KRAS status, cetuximab did not induce an antitumor response in a majority of patient tumors. In the subset of non-responsive tumors, data showed that expression levels of EGFR ligands contributed to a mechanism of resistance. Transcriptomic and phosphoproteomic profiling revealed deregulation of multiple pathways, significantly the Notch and Erbb2. Targeting these nodes concurrently resulted in antitumor efficacy in a majority of cetuximab-resistant tumors. These findings highlight the importance of integrating molecular profile and functional testing tools for optimization of alternate strategies in resistant population.


Subject(s)
Colorectal Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Receptor, ErbB-2/metabolism , Receptors, Notch/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Base Sequence , Cetuximab/pharmacology , Cetuximab/therapeutic use , Codon/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , ErbB Receptors/genetics , Gene Expression Profiling , Humans , Mutation/genetics , Neoplasm Metastasis , Proteomics , Reproducibility of Results
3.
Nat Commun ; 6: 6169, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25721094

ABSTRACT

Predicting clinical response to anticancer drugs remains a major challenge in cancer treatment. Emerging reports indicate that the tumour microenvironment and heterogeneity can limit the predictive power of current biomarker-guided strategies for chemotherapy. Here we report the engineering of personalized tumour ecosystems that contextually conserve the tumour heterogeneity, and phenocopy the tumour microenvironment using tumour explants maintained in defined tumour grade-matched matrix support and autologous patient serum. The functional response of tumour ecosystems, engineered from 109 patients, to anticancer drugs, together with the corresponding clinical outcomes, is used to train a machine learning algorithm; the learned model is then applied to predict the clinical response in an independent validation group of 55 patients, where we achieve 100% sensitivity in predictions while keeping specificity in a desired high range. The tumour ecosystem and algorithm, together termed the CANScript technology, can emerge as a powerful platform for enabling personalized medicine.


Subject(s)
Algorithms , Antineoplastic Agents/pharmacology , Extracellular Matrix Proteins/metabolism , Precision Medicine/methods , Tissue Engineering/methods , Tumor Microenvironment/drug effects , Analysis of Variance , Chromatography, Liquid , DNA Mutational Analysis , Gene Expression Profiling , Humans , Machine Learning , Microscopy, Electron, Scanning , Predictive Value of Tests , Tandem Mass Spectrometry
4.
Cancer Res ; 73(3): 1118-27, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23361299

ABSTRACT

The PI3K/AKT/mTOR pathway is an important signaling axis that is perturbed in majority of cancers. Biomarkers such as pS6RP, GLUT1, and tumor FDG uptake are being evaluated in patient stratification for mTOR pathway inhibitors. In the absence of a clear understanding of the underlying mechanisms in tumor signaling, the biomarker strategy for patient stratification is of limited use. Here, we show that no discernible correlation exists between FDG uptake and the corresponding Ki67, GLUT1, pS6RP expression in tumor biopsies from patients with head and neck cancer. Correlation between GLUT1 and pS6RP levels in tumors was observed but elevated pS6RP was noticed even in the absence of concomitant AKT activation, suggesting that other downstream molecules of PI3K/AKT and/or other pathways upstream of mTOR are active in these tumors. Using an ex vivo platform, we identified putative responders to rapamycin, an mTOR inhibitor in these tumors. However, rapamycin did not induce antitumor effect in the majority of tumors with activated mTOR, potentially attributable to the observation that rapamycin induces feedback activation of AKT. Accordingly, treatment of these tumors with an AKT inhibitor and rapamycin uniformly resulted in abrogation of mTOR inhibition-induced AKT activation in all tumors but failed to induce antitumor response in a subset. Phosphoproteomic profiling of tumors resistant to dual AKT/mTOR inhibitors revealed differential activation of multiple pathways involved in proliferation and survival. Collectively, our results suggest that, in addition to biomarker-based segregation, functional assessment of a patient's tumor before treatment with mTOR/AKT inhibitors may be useful for patient stratification.


Subject(s)
Head and Neck Neoplasms/drug therapy , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , TOR Serine-Threonine Kinases/antagonists & inhibitors , Adult , Apoptosis/drug effects , Cell Proliferation/drug effects , Female , Glucose Transporter Type 1/analysis , Head and Neck Neoplasms/pathology , Humans , Male , Middle Aged , Proto-Oncogene Proteins c-akt/metabolism , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...