Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Harmful Algae ; 92: 101586, 2020 02.
Article in English | MEDLINE | ID: mdl-32113601

ABSTRACT

With anthropogenic eutrophication and climate change causing an increase in cyanobacterial blooms worldwide, the need to understand the consequences of these blooms on aquatic ecosystems is paramount. Key questions remain unanswered with respect to how cyanobacteria blooms affect the structure of aquatic food webs, the foraging abilities of higher consumers, and the potential for cyanotoxins (e.g., microcystins [MCs]) to accumulate in fish. Toward addressing these uncertainties, physicochemical attributes, water (for MCs), phytoplankton, zooplankton, and epipelagic and benthic age-0 fish were sampled at 75 sites (44 sites for fish) of varying cyanobacteria concentration (0.1-44 µg/L) in western Lake Erie during the cyanobacteria bloom season, 2013-2014. Sites with high cyanobacteria biomass were characterized by Microcystis spp. (84-100% of biomass), detectible levels of MCs (maximum = 10.8 µg/L), and low water transparency (minimum = 0.25 m). Counter to expectations, strong positive relationships were found between cyanobacteria concentration and the biomass of several herbivorous zooplankton taxa (e.g., Daphnia, Diaphanosoma spp., Bosmina (formerly Eubosmina) coregoni, and Calanoida spp.). Expectations regarding fish were partly supported (e.g., diet selectivity varied across a cyanobacteria gradient) and partly not (e.g., consumption of zooplankton did not differ between bloom and non-bloom sites). These findings show that cyanobacterial blooms can strongly affect the distribution, composition, and interactions of zooplankton and fish, sometimes in surprising ways, highlighting the need to further explore their impact on aquatic food webs.


Subject(s)
Cyanobacteria , Lakes , Animals , Ecosystem , Eutrophication , Food Chain
SELECTION OF CITATIONS
SEARCH DETAIL
...